|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年江苏省连云港市岗埠中学中考数学押题卷含解析
    立即下载
    加入资料篮
    2022年江苏省连云港市岗埠中学中考数学押题卷含解析01
    2022年江苏省连云港市岗埠中学中考数学押题卷含解析02
    2022年江苏省连云港市岗埠中学中考数学押题卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江苏省连云港市岗埠中学中考数学押题卷含解析

    展开
    这是一份2022年江苏省连云港市岗埠中学中考数学押题卷含解析,共22页。试卷主要包含了函数中,x的取值范围是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,1,85,1.关于这组数据说法错误的是(  )
    A.极差是20 B.中位数是91 C.众数是1 D.平均数是91
    2.已知关于x的方程2x+a-9=0的解是x=2,则a的值为
    A.2 B.3 C.4 D.5
    3.等腰中,,D是AC的中点,于E,交BA的延长线于F,若,则的面积为( )

    A.40 B.46 C.48 D.50
    4.图为一根圆柱形的空心钢管,它的主视图是( )

    A. B. C. D.
    5.从3、1、-2这三个数中任取两个不同的数作为P点的坐标,则P点刚好落在第四象限的概率是( )
    A. B. C. D.
    6.如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是( )

    A.点A B.点B C.点C D.点D
    7.函数中,x的取值范围是(  )
    A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣2
    8.已知直线y=ax+b(a≠0)经过第一,二,四象限,那么直线y=bx-a一定不经过(   )
    A.第一象限
    B.第二象限
    C.第三象限
    D.第四象限
    9.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有(  )

    A.4个 B.3个 C.2个 D.1个
    10.一元二次方程x2﹣8x﹣2=0,配方的结果是(  )
    A.(x+4)2=18 B.(x+4)2=14 C.(x﹣4)2=18 D.(x﹣4)2=14
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.在矩形ABCD中,AB=4,BC=9,点E是AD边上一动点,将边AB沿BE折叠,点A的对应点为A′,若点A′到矩形较长两对边的距离之比为1:3,则AE的长为_____.
    12.分解因式:3ax2﹣3ay2=_____.
    13.已知x1,x2是方程x2-3x-1=0的两根,则=______.
    14.如图,在正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF,OE、OF分别交AB、BC于点E、点F,AE=3,FC=2,则EF的长为_____.

    15.太阳半径约为696000千米,数字696000用科学记数法表示为 千米.
    16.若反比例函数y=的图象在每一个象限中,y随着x的增大而减小,则m的取值范围是_____.
    三、解答题(共8题,共72分)
    17.(8分)如图,在Rt△ABC中,∠C=90°,AC,tanB,半径为2的⊙C分别交AC,BC于点D、E,得到DE弧.求证:AB为⊙C的切线.求图中阴影部分的面积.

    18.(8分)问题提出
    (1)如图①,在矩形ABCD中,AB=2AD,E为CD的中点,则∠AEB   ∠ACB(填“>”“<”“=”);
    问题探究
    (2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;
    问题解决
    (3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.

    19.(8分)如图,抛物线与x轴交于A,B,与y轴交于点C(0,2),直线经过点A,C.

    (1)求抛物线的解析式;
    (2)点P为直线AC上方抛物线上一动点;
    ①连接PO,交AC于点E,求的最大值;
    ②过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使△PFC中的一个角等于∠CAB的2倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.
    20.(8分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=1.

    (1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.
    i)求证:△CAE∽△CBF;
    ii)若BE=1,AE=2,求CE的长;
    (2)如图②,当四边形ABCD和EFCG均为矩形,且时,若BE=1,AE=2,CE=3,求k的值;
    (3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)
    21.(8分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.求反比例函数的表达式在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标求△PAB的面积.

    22.(10分)已知:如图,□ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F. 求证:BE=DF.
    23.(12分)如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连接DB,且AD=DB.

    (1)求证:DB为⊙O的切线;(2)若AD=1,PB=BO,求弦AC的长.
    24.如图,在四边形ABCD中,AB=BC=1,CD=DA=1,且∠B=90°,求:∠BAD的度数;四边形ABCD的面积(结果保留根号).




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    试题分析:因为极差为:1﹣78=20,所以A选项正确;
    从小到大排列为:78,85,91,1,1,中位数为91,所以B选项正确;
    因为1出现了两次,最多,所以众数是1,所以C选项正确;
    因为,所以D选项错误.
    故选D.
    考点:①众数②中位数③平均数④极差.
    2、D
    【解析】
    ∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,
    解得a=1.故选D. 
    3、C
    【解析】
    ∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,
    ∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,
    ∴∠ABD=∠ACF,
    又∵AB=AC,∴△ABD≌△ACF,∴AD=AF,
    ∵AB=AC,D为AC中点,∴AB=AC=2AD=2AF,
    ∵BF=AB+AF=12,∴3AF=12,∴AF=4,
    ∴AB=AC=2AF=8,
    ∴S△FBC= ×BF×AC=×12×8=48,故选C.
    4、B
    【解析】
    试题解析:从正面看是三个矩形,中间矩形的左右两边是虚线,
    故选B.
    5、B
    【解析】
    解:画树状图得:

    ∵共有6种等可能的结果,其中(1,-2),(3,-2)点落在第四项象限,∴P点刚好落在第四象限的概率==.故选B.
    点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,熟记各象限内点的符号特点是解题的关键.
    6、B
    【解析】
    ,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.
    【详解】




    因为0.268<0.732<1.268,
    所以 表示的点与点B最接近,
    故选B.
    7、B
    【解析】
    要使有意义,
    所以x+1≥0且x+1≠0,
    解得x>-1.
    故选B.
    8、D
    【解析】
    根据直线y=ax+b(a≠0)经过第一,二,四象限,可以判断a、b的正负,从而可以判断直线y=bx-a经过哪几个象限,不经过哪个象限,本题得以解决.
    【详解】
    ∵直线y=ax+b(a≠0)经过第一,二,四象限,
    ∴a<0,b>0,
    ∴直线y=bx-a经过第一、二、三象限,不经过第四象限,
    故选D.
    【点睛】
    本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.
    9、A
    【解析】
    ①正确.只要证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;
    ②正确.由AD∥BC,推出△AEF∽△CBF,推出=,由AE=AD=BC,推出=,即CF=2AF;
    ③正确.只要证明DM垂直平分CF,即可证明;
    ④正确.设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有 =,即b=a,可得tan∠CAD===.
    【详解】
    如图,过D作DM∥BE交AC于N.
    ∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB.
    ∵BE⊥AC于点F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;
    ∵AD∥BC,∴△AEF∽△CBF,∴=.
    ∵AE=AD=BC,∴=,∴CF=2AF,故②正确;
    ∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF.
    ∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;
    设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有 =,即b=a,∴tan∠CAD===.故④正确.
    故选A.

    【点睛】
    本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.
    10、C
    【解析】
    x2-8x=2,
    x2-8x+16=1,
    (x-4)2=1.
    故选C.
    【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、或
    【解析】
    由,,得,所以.再以①和②两种情况分类讨论即可得出答案.
    【详解】
    因为翻折,所以,,过作,交AD于F,交BC于G,根据题意,,.
    若点在矩形ABCD的内部时,如图

    则GF=AB=4,
    由可知.
    又.
    .
    又.
    .
    .
    .

    则,.
    .
    则.
    .
    .

    则,.
    .
    则 .
    .
    .
    故答案或.
    【点睛】
    本题主要考查了翻折问题和相似三角形判定,灵活运用是关键
    错因分析:难题,失分原因有3点:(1)不能灵活运用矩形和折叠与动点问题叠的性质;(2)没有分情况讨论,由于点A′A′到矩形较长两对边的距离之比为1:3,需要分A′M:A′N=1:3,A′M:A′N=1:3和A′M:A′N=3:1,A′M:A′N=3:1这两种情况;(3)不能根据相似三角形对应边成比例求出三角形的边长.
    12、3a(x+y)(x-y)
    【解析】
    解:3ax2-3ay2=3a(x2-y2)=3a(x+y)(x-y).
    【点睛】
    本题考查提公因式法与公式法的综合运用.
    13、﹣1.
    【解析】
    试题解析:∵,是方程的两根,∴、,∴== =﹣1.故答案为﹣1.
    14、
    【解析】
    由△BOF≌△AOE,得到BE=FC=2,在直角△BEF中,从而求得EF的值.
    【详解】
    ∵正方形ABCD中,OB=OC,∠BOC=∠EOF=90°,
    ∴∠EOB=∠FOC,
    在△BOE和△COF中,,
    ∴△BOE≌△COF(ASA)
    ∴BE=FC=2,
    同理BF=AE=3,
    在Rt△BEF中,BF=3,BE=2,
    ∴EF==.
    故答案为
    【点睛】
    本题考查了正方形的性质、三角形全等的性质和判定、勾股定理,在四边形中常利用三角形全等的性质和勾股定理计算线段的长.
    15、 .
    【解析】
    试题分析:696000=6.96×1,故答案为6.96×1.
    考点:科学记数法—表示较大的数.
    16、m>1
    【解析】
    ∵反比例函数的图象在其每个象限内,y随x的增大而减小,
    ∴>0,
    解得:m>1,
    故答案为m>1.

    三、解答题(共8题,共72分)
    17、 (1)证明见解析;(2)1-π.
    【解析】
    (1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;
    (2)分别求出△ACB的面积和扇形DCE的面积,即可得出答案.
    【详解】
    (1)过C作CF⊥AB于F.
    ∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.
    ∵△ACB的面积S,∴CF2,∴CF为⊙C的半径.
    ∵CF⊥AB,∴AB为⊙C的切线;

    (2)图中阴影部分的面积=S△ACB﹣S扇形DCE1﹣π.
    【点睛】
    本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键.
    18、(1)>;(2)当点P位于CD的中点时,∠APB最大,理由见解析;(3)4米.
    【解析】
    (1)过点E作EF⊥AB于点F,由矩形的性质和等腰三角形的判定得到:△AEF是等腰直角三角形,易证∠AEB=90°,而∠ACB<90°,由此可以比较∠AEB与∠ACB的大小
    (2)假设P为CD的中点,作△APB的外接圆⊙O,则此时CD切⊙O于P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB与∠APB均为⊙O中弧AB所对的角,则∠AFB=∠APB,即可判断∠APB与∠AEB的大小关系,即可得点P位于何处时,∠APB最大;
    (3)过点E作CE∥DF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.
    【详解】
    解:(1)∠AEB>∠ACB,理由如下:

    如图1,过点E作EF⊥AB于点F,
    ∵在矩形ABCD中,AB=2AD,E为CD中点,
    ∴四边形ADEF是正方形,
    ∴∠AEF=45°,
    同理,∠BEF=45°,
    ∴∠AEB=90°.
    而在直角△ABC中,∠ABC=90°,
    ∴∠ACB<90°,
    ∴∠AEB>∠ACB.
    故答案为:>;
    (2)当点P位于CD的中点时,∠APB最大,理由如下:
    假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,

    在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,
    ∵∠AFB是△EFB的外角,
    ∴∠AFB>∠AEB,
    ∵∠AFB=∠APB,
    ∴∠APB>∠AEB,
    故点P位于CD的中点时,∠APB最大:
    (3)如图3,过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,

    以点O为圆心,OA长为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,
    由题意知DP=OQ=,
    ∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,
    BD=11.6米, AB=3米,CD=EF=1.6米,
    ∴OA=11.6+3﹣1.6=13米,
    ∴DP=米,
    即小刚与大楼AD之间的距离为4米时看广告牌效果最好.
    【点睛】
    本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键.
    19、(1);(2)①有最大值1;②(2,3)或(,)
    【解析】
    (1)根据自变量与函数值的对应关系,可得A,C点坐标,根据代定系数法,可得函数解析式;
    (2)①根据相似三角形的判定与性质,可得,根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;
    ②根据勾股定理的逆定理得到△ABC是以∠ACB为直角的直角三角形,取AB的中点D,求得D(,0),得到DA=DC=DB=,过P作x轴的平行线交y轴于R,交AC于G,情况一:如图,∠PCF=2∠BAC=∠DGC+∠CDG,情况二,∠FPC=2∠BAC,解直角三角形即可得到结论.
    【详解】
    (1)当x=0时,y=2,即C(0,2),
    当y=0时,x=4,即A(4,0),
    将A,C点坐标代入函数解析式,得

    解得,
    抛物线的解析是为;
       (2)过点P向x轴做垂线,交直线AC于点M,交x轴于点N

    ∵直线PN∥y轴,
    ∴△PEM~△OEC,

    把x=0代入y=-x+2,得y=2,即OC=2,
    设点P(x,-x2+x+2),则点M(x,-x+2),
    ∴PM=(-x2+x+2)-(-x+2)=-x2+2x=-(x-2)2+2,
    ∴=,
    ∵0<x<4,∴当x=2时,=有最大值1.
    ②∵A(4,0),B(-1,0),C(0,2),
    ∴AC=2,BC=,AB=5,
    ∴AC2+BC2=AB2,
    ∴△ABC是以∠ACB为直角的直角三角形,取AB的中点D,
    ∴D(,0),
    ∴DA=DC=DB=,
    ∴∠CDO=2∠BAC,
    ∴tan∠CDO=tan(2∠BAC)=,
    过P作x轴的平行线交y轴于R,交AC的延长线于G,
    情况一:如图

    ∴∠PCF=2∠BAC=∠PGC+∠CPG,
    ∴∠CPG=∠BAC,
    ∴tan∠CPG=tan∠BAC=,
    即,
    令P(a,-a2+a+2),
    ∴PR=a,RC=-a2+a,
    ∴,
    ∴a1=0(舍去),a2=2,
    ∴xP=2,-a2+a+2=3,P(2,3)
    情况二,∴∠FPC=2∠BAC,
    ∴tan∠FPC=,
    设FC=4k,
    ∴PF=3k,PC=5k,
    ∵tan∠PGC=,
    ∴FG=6k,
    ∴CG=2k,PG=3k,
    ∴RC=k,RG=k,PR=3k-k=k,
    ∴,
    ∴a1=0(舍去),a2=,
    xP=,-a2+a+2=,即P(,),
    综上所述:P点坐标是(2,3)或(,).
    【点睛】
    本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用相似三角形的判定与性质得出,又利用了二次函数的性质;解(3)的关键是利用解直角三角形,要分类讨论,以防遗漏.
    20、(1)i)证明见试题解析;ii);(2);(3).
    【解析】
    (1)i)由∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,得到∠ACE=∠BCF,又由于,故△CAE∽△CBF;
    ii)由,得到BF=,再由△CAE∽△CBF,得到∠CAE=∠CBF,进一步可得到∠EBF=1°,从而有,解得;
    (2)连接BF,同理可得:∠EBF=1°,由,得到,,故,从而,得到,代入解方程即可;
    (3)连接BF,同理可得:∠EBF=1°,过C作CH⊥AB延长线于H,可得:
    ,,
    故,
    从而有.
    【详解】
    解:(1)i)∵∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,∴∠ACE=∠BCF,又∵,∴△CAE∽△CBF;
    ii)∵,∴BF=,∵△CAE∽△CBF,∴∠CAE=∠CBF,又∵∠CAE+∠CBE=1°,∴∠CBF+∠CBE=1°,即∠EBF=1°,∴,解得;
    (2)连接BF,同理可得:∠EBF=1°,∵,∴,,∴,∴,,∴,∴,解得;
    (3)连接BF,同理可得:∠EBF=1°,过C作CH⊥AB延长线于H,可得:
    ,,
    ∴,
    ∴.

    【点睛】
    本题考查相似三角形的判定与性质;正方形的性质;矩形的性质;菱形的性质.
    21、(1)反比例函数的表达式y=,(2)点P坐标(,0), (3)S△PAB= 1.1.
    【解析】
    (1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面积.
    解:(1)把点A(1,a)代入一次函数y=﹣x+4,
    得a=﹣1+4, 
    解得a=3, 
    ∴A(1,3), 
    点A(1,3)代入反比例函数y=, 
    得k=3,  
    ∴反比例函数的表达式y=, 
    (2)把B(3,b)代入y=得,b=1
    ∴点B坐标(3,1);
    作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小, 
    ∴D(3,﹣1),
    设直线AD的解析式为y=mx+n, 
    把A,D两点代入得,, 解得m=﹣2,n=1, 
    ∴直线AD的解析式为y=﹣2x+1,
    令y=0,得x=, 
    ∴点P坐标(,0),

    (3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.
    点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.
    22、(1)证明:∵ABCD是平行四边形
    ∴AB=CD
    AB∥CD
    ∴∠ABE=∠CDF
    又∵AE⊥BD,CF⊥BD
    ∴∠AEB=∠CFD=
    ∴△ABE≌△CDF
    ∴BE=DF
    【解析】
    证明:在□ABCD中
    ∵AB∥CD
    ∴∠ABE=∠CDF…………………………………………………………4分
    ∵AE⊥BD CF⊥BD
    ∴∠AEB=∠CFD=900……………………………………………………5分
    ∵AB=CD
    ∴△ABE≌△CDF…………………………………………………………6分
    ∴BE=DF
    23、(1)见解析;(2)AC=1.
    【解析】
    (1)要证明DB为⊙O的切线,只要证明∠OBD=90即可.
    (2)根据已知及直角三角形的性质可以得到PD=2BD=2DA=2,再利用等角对等边可以得到AC=AP,这样求得AP的值就得出了AC的长.
    【详解】
    (1)证明:连接OD;
    ∵PA为⊙O切线,
    ∴∠OAD=90°;
    在△OAD和△OBD中,


    ∴△OAD≌△OBD,
    ∴∠OBD=∠OAD=90°,
    ∴OB⊥BD
    ∴DB为⊙O的切线
    (2)解:在Rt△OAP中;
    ∵PB=OB=OA,
    ∴OP=2OA,
    ∴∠OPA=10°,
    ∴∠POA=60°=2∠C,
    ∴PD=2BD=2DA=2,
    ∴∠OPA=∠C=10°,
    ∴AC=AP=1.
    【点睛】
    本题考查了切线的判定及性质,全等三全角形的判定等知识点的掌握情况.
    24、(1);
    (2)
    【解析】
    (1)连接AC,由勾股定理求出AC的长,再根据勾股定理的逆定理判断出△ACD的形状,进而可求出∠BAD的度数;
    (2)由(1)可知△ABC和△ADC是Rt△,再根据S四边形ABCD=S△ABC+S△ADC即可得出结论.
    【详解】
    解:(1)连接AC,如图所示:

    ∵AB=BC=1,∠B=90°
    ∴AC=,
    又∵AD=1,DC=,
    ∴ AD2+AC2=3 CD2=()2=3
    即CD2=AD2+AC2
    ∴∠DAC=90°
    ∵AB=BC=1
    ∴∠BAC=∠BCA=45°
    ∴∠BAD=135°;
    (2)由(1)可知△ABC和△ADC是Rt△,
    ∴S四边形ABCD=S△ABC+S△ADC=1×1×+1××= .
    【点睛】
    考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键.

    相关试卷

    江苏省连云港市岗埠中学2023-2024学年数学九年级第一学期期末考试试题含答案: 这是一份江苏省连云港市岗埠中学2023-2024学年数学九年级第一学期期末考试试题含答案,共7页。试卷主要包含了两个相邻自然数的积是1等内容,欢迎下载使用。

    2022-2023学年江苏省连云港市岗埠中学数学七年级第二学期期末调研模拟试题含答案: 这是一份2022-2023学年江苏省连云港市岗埠中学数学七年级第二学期期末调研模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    江西省南昌石埠初级中学2021-2022学年中考数学押题卷含解析: 这是一份江西省南昌石埠初级中学2021-2022学年中考数学押题卷含解析,共22页。试卷主要包含了下列运算结果正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map