2021-2022学年浙江省绍兴市皋埠镇中学中考数学押题试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,平面直角坐标中,点A(1,2),将AO绕点A逆时针旋转90°,点O的对应点B恰好落在双曲线y=(x>0)上,则k的值为( )
A.2 B.3 C.4 D.6
2.九章算术是中国古代数学专著,九章算术方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是
A. B. C. D.
3.如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是( )
A.(3,1) B.(-4,1) C.(1,-1) D.(-3,1)
4.下列实数中是无理数的是( )
A. B.2﹣2 C.5. D.sin45°
5.函数y=中,自变量x的取值范围是( )
A.x>3 B.x<3 C.x=3 D.x≠3
6.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为( )
A.34° B.56° C.66° D.54°
7.为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A:篮球,B:排球,C:足球,D:羽毛球,E:乒乓球.学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是( )
A.选科目E的有5人
B.选科目A的扇形圆心角是120°
C.选科目D的人数占体育社团人数的
D.据此估计全校1000名八年级同学,选择科目B的有140人
8.如图,AB为⊙O的直径,C、D为⊙O上的点,若AC=CD=DB,则cos∠CAD =( )
A. B. C. D.
9.如图,在△ABC中,AC=BC,点D在BC的延长线上,AE∥BD,点ED在AC同侧,若∠CAE=118°,则∠B的大小为( )
A.31° B.32° C.59° D.62°
10.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是
A. B. C. D.
11.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于( )
A.4 B.6 C.16π D.8
12.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是( )
A.y=(x﹣2)2+1 B.y=(x+2)2+1
C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.计算:a3÷(﹣a)2=_____.
14.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为 .
15.PA、PB分别切⊙O于点A、B,∠PAB=60°,点C在⊙O上,则∠ACB的度数为_____.
16.化简:=_____.
17.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P的坐标是_______.
18.已知一个斜坡的坡度,那么该斜坡的坡角的度数是______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.用树状图或列表等方法列出所有可能出现的结果;求两次摸到的球的颜色不同的概率.
20.(6分)如图,以AD为直径的⊙O交AB于C点,BD的延长线交⊙O于E点,连CE交AD于F点,若AC=BC.
(1)求证:;
(2)若,求tan∠CED的值.
21.(6分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.求∠ABC的度数;求证:AE是⊙O的切线;当BC=4时,求劣弧AC的长.
22.(8分)丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.
①A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):
②A、B两班学生测试成绩在80≤x<90这一组的数据如下:
A班:80 80 82 83 85 85 86 87 87 87 88 89 89
B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89
③A、B两班学生测试成绩的平均数、中位数、方差如下:
平均数
中位数
方差
A班
80.6
m
96.9
B班
80.8
n
153.3
根据以上信息,回答下列问题:补全数学成绩频数分布直方图;写出表中m、n的值;请你对比分析A、B两班学生的数学学习情况(至少从两个不同的角度分析).
23.(8分)如图,在中,,,点D是BC上任意一点,将线段AD绕点A逆时针方向旋转,得到线段AE,连结EC.
依题意补全图形;
求的度数;
若,,将射线DA绕点D顺时针旋转交EC的延长线于点F,请写出求AF长的思路.
24.(10分)九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设(分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为千米,骑自行车学生骑行的路程为千米,关于的函数图象如图所示.
(1)求关于的函数解析式;
(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?
25.(10分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.设x天后每千克苹果的价格为p元,写出p与x的函数关系式;若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?
26.(12分)某楼盘2018年2月份准备以每平方米7500元的均价对外销售,由于国家有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格连续两个月进行下调,4 月份下调到每平方米6075元的均价开盘销售.
(1)求3、4两月平均每月下调的百分率;
(2)小颖家现在准备以每平方米6075元的开盘均价,购买一套100平方米的房子,因为她家一次性付清购房款,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,小颖家选择哪种方案更优惠?
(3)如果房价继续回落,按此平均下调的百分率,请你预测到6月份该楼盘商品房成交均价是否会跌破4800元/平方米,请说明理由.
27.(12分)某中学采用随机的方式对学生掌握安全知识的情况进行测评,并按成绩高低分成优、良、中、差四个等级进行统计,绘制了下面两幅尚不完整的统计图.请根据有关信息解答:
(1)接受测评的学生共有________人,扇形统计图中“优”部分所对应扇形的圆心角为________°,并补全条形统计图;
(2)若该校共有学生1200人,请估计该校对安全知识达到“良”程度的人数;
(3)测评成绩前五名的学生恰好3个女生和2个男生,现从中随机抽取2人参加市安全知识竞赛,请用树状图或列表法求出抽到1个男生和1个女生的概率.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
作AC⊥y轴于C,ADx轴,BD⊥y轴,它们相交于D,有A点坐标得到AC=1,OC=1,由于AO绕点A逆时针旋转90°,点O的对应B点,所以相当是把△AOC绕点A逆时针旋转90°得到△ABD,根据旋转的性质得AD=AC=1,BD=OC=1,原式可得到B点坐标为(2,1),然后根据反比例函数图象上点的坐标特征计算k的值.
【详解】
作AC⊥y轴于C,AD⊥x轴,BD⊥y轴,它们相交于D,如图,∵A点坐标为(1,1),∴AC=1,OC=1.
∵AO绕点A逆时针旋转90°,点O的对应B点,即把△AOC绕点A逆时针旋转90°得到△ABD,∴AD=AC=1,BD=OC=1,∴B点坐标为(2,1),∴k=2×1=2.
故选B.
【点睛】
本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了坐标与图形变化﹣旋转.
2、B
【解析】
解:设走路快的人要走 x 步才能追上走路慢的人,根据题意得:.故选B.
点睛:本题考查了一元一次方程的应用.找准等量关系,列方程是关键.
3、B
【解析】
作出图形,结合图形进行分析可得.
【详解】
如图所示:
①以AC为对角线,可以画出▱AFCB,F(-3,1);
②以AB为对角线,可以画出▱ACBE,E(1,-1);
③以BC为对角线,可以画出▱ACDB,D(3,1),
故选B.
4、D
【解析】
A、是有理数,故A选项错误;
B、是有理数,故B选项错误;
C、是有理数,故C选项错误;
D、是无限不循环小数,是无理数,故D选项正确;
故选:D.
5、D
【解析】
由题意得,x﹣1≠0,
解得x≠1.
故选D.
6、B
【解析】
试题分析:∵AB∥CD,
∴∠D=∠1=34°,
∵DE⊥CE,
∴∠DEC=90°,
∴∠DCE=180°﹣90°﹣34°=56°.
故选B.
考点:平行线的性质.
7、B
【解析】
A选项先求出调查的学生人数,再求选科目E的人数来判定,
B选项先求出A科目人数,再利用×360°判定即可,
C选项中由D的人数及总人数即可判定,
D选项利用总人数乘以样本中B人数所占比例即可判定.
【详解】
解:调查的学生人数为:12÷24%=50(人),选科目E的人数为:50×10%=5(人),故A选项正确,
选科目A的人数为50﹣(7+12+10+5)=16人,选科目A的扇形圆心角是×360°=115.2°,故B选项错误,
选科目D的人数为10,总人数为50人,所以选科目D的人数占体育社团人数的,故C选项正确,
估计全校1000名八年级同学,选择科目B的有1000×=140人,故D选项正确;
故选B.
【点睛】
本题主要考查了条形统计图及扇形统计图,解题的关键是读懂统计图,从统计图中找到准确信息.
8、D
【解析】
根据圆心角,弧,弦的关系定理可以得出===,根据圆心角和圆周角的关键即可求出的度数,进而求出它的余弦值.
【详解】
解:
===,
故选D.
【点睛】
本题考查圆心角,弧,弦,圆周角的关系,熟记特殊角的三角函数值是解题的关键.
9、A
【解析】
根据等腰三角形的性质得出∠B=∠CAB,再利用平行线的性质解答即可.
【详解】
∵在△ABC中,AC=BC,
∴∠B=∠CAB,
∵AE∥BD,∠CAE=118°,
∴∠B+∠CAB+∠CAE=180°,
即2∠B=180°−118°,
解得:∠B=31°,
故选A.
【点睛】
此题考查等腰三角形的性质,关键是根据等腰三角形的性质得出∠B=∠CAB.
10、A。
【解析】如图,∵根据三角形面积公式,当一边OA固定时,它边上的高最大时,三角形面积最大,
∴当PO⊥AO,即PO为三角形OA边上的高时,△APO的面积y最大。
此时,由AB=2,根据勾股定理,得弦AP=x=。
∴当x=时,△APO的面积y最大,最大面积为y=。从而可排除B,D选项。
又∵当AP=x=1时,△APO为等边三角形,它的面积y=,
∴此时,点(1,)应在y=的一半上方,从而可排除C选项。
故选A。
11、A
【解析】
由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8π,底面半径=8π÷2π.
【详解】
解:由题意知:底面周长=8π,
∴底面半径=8π÷2π=1.
故选A.
【点睛】
此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长.
12、C
【解析】
试题分析:根据顶点式,即A、C两个选项的对称轴都为,再将(0,1)代入,符合的式子为C选项
考点:二次函数的顶点式、对称轴
点评:本题考查学生对二次函数顶点式的掌握,难度较小,二次函数的顶点式解析式为,顶点坐标为,对称轴为
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、a
【解析】
利用整式的除法运算即可得出答案.
【详解】
原式,
.
【点睛】
本题考查的知识点是整式的除法,解题关键是先将变成,再进行运算.
14、(10,3)
【解析】
根据折叠的性质得到AF=AD,所以在直角△AOF中,利用勾股定理求得OF=6,然后设EC=x,则EF=DE=8-x,CF=10-6=4,根据勾股定理列方程求出EC可得点E的坐标.
【详解】
∵四边形AOCD为矩形,D的坐标为(10,8),
∴AD=BC=10,DC=AB=8,
∵矩形沿AE折叠,使D落在BC上的点F处,
∴AD=AF=10,DE=EF,
在Rt△AOF中,OF= =6,
∴FC=10−6=4,
设EC=x,则DE=EF=8−x,
在Rt△CEF中,EF2=EC2+FC2,
即(8−x)2=x2+42,
解得x=3,即EC的长为3.
∴点E的坐标为(10,3).
15、60°或120°.
【解析】
连接OA、OB,根据切线的性质得出∠OAP的度数,∠OBP的度数;再根据四边形的内角和是360°,求出∠AOB的度数,有圆周角定理或圆内接四边形的性质,求出∠ACB的度数即可.
【详解】
解:连接OA、OB.
∵PA,PB分别切⊙O于点A,B,
∴OA⊥PA,OB⊥PB;
∴∠PAO=∠PBO=90°;
又∵∠APB=60°,
∴在四边形AOBP中,∠AOB=360°﹣90°﹣90°﹣60°=120°,
∴
即当C在D处时,∠ACB=60°.
在四边形ADBC中,∠ACB=180°﹣∠ADB=180°﹣60°=120°.
于是∠ACB的度数为60°或120°,
故答案为60°或120°.
【点睛】
本题考查的是切线的性质定理,圆内接四边形的性质,是一道基础题.
16、
【解析】
直接利用二次根式的性质化简求出答案.
【详解】
,故答案为.
【点睛】
本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.
17、(2019,2)
【解析】
分析点P的运动规律,找到循环次数即可.
【详解】
分析图象可以发现,点P的运动每4次位置循环一次.每循环一次向右移动四个单位.
∴2019=4×504+3
当第504循环结束时,点P位置在(2016,0),在此基础之上运动三次到(2019,2)
故答案为(2019,2).
【点睛】
本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.
18、
【解析】
坡度=坡角的正切值,据此直接解答.
【详解】
解:∵,
∴坡角=30°.
【点睛】
此题主要考查学生对坡度及坡角的理解及掌握.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)详见解析;(2).
【解析】
试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;
(2)由(1)中树状图可求得两次摸到的球的颜色不同的情况有4种,再利用概率公式求解即可求得答案.
试题解析:(1)如图:
,
所有可能的结果为(白1,白2)、(白1,红)、(白2,白1)、(白2,红)、(红,白1)、(红,白2);
(2)共有6种情况,两次摸到的球的颜色不同的情况有4种,概率为.
20、(1)见解析;(2)tan∠CED=
【解析】
(1)欲证明,只要证明即可;
(2)由,可得,设FO=2a,OC=3a,则DF=a,DE=1.5a,AD=DB=6a,由,可得BD•BE=BC•BA,设AC=BC=x,则有,由此求出AC、CD即可解决问题.
【详解】
(1)证明:如下图,连接AE,
∵AD是直径,
∴,
∴DC⊥AB,
∵AC=CB,
∴DA=DB,
∴∠CDA=∠CDB,
∵,,
∴∠BDC=∠EAC,
∵∠AEC=∠ADC,
∴∠EAC=∠AEC,
∴;
(2)解:如下图,连接OC,
∵AO=OD,AC=CB,
∴OC∥BD,
∴,
∴,
设FO=2a,OC=3a,则DF=a,DE=1.5a,AD=DB=6a,
∵∠BAD=∠BEC,∠B=∠B,
∴,
∴BD•BE=BC•BA,设AC=BC=x,
则有,
∴,
∴,
∴,
∴.
【点睛】
本题属于圆的综合题,涉及到三角形的相似,解直角三角形等相关考点,熟练掌握三角形相似的判定及解直角三角形等相关内容是解决本题的关键.
21、(1)60°;(2)证明略;(3)
【解析】
(1)根据∠ABC与∠D都是劣弧AC所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°;
(2)根据AB是⊙O的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;
(3)连结OC,证出△OBC是等边三角形,算出∠BOC=60°且⊙O的半径等于4,可得劣弧AC所对的圆心角∠AOC=120°,再由弧长公式加以计算,可得劣弧AC的长.
【详解】
(1)∵∠ABC与∠D都是弧AC所对的圆周角,
∴∠ABC=∠D=60°;
(2)∵AB是⊙O的直径,
∴∠ACB=90°.
∴∠BAC=30°,
∴∠BAE=∠BAC+∠EAC=30°+60°=90°,
即BA⊥AE,
∴AE是⊙O的切线;
(3)如图,连接OC,
∵OB=OC,∠ABC=60°,
∴△OBC是等边三角形,
∴OB=BC=4,∠BOC=60°,
∴∠AOC=120°,
∴劣弧AC的长为==.
【点睛】
本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.
22、(1)见解析;(2)m=81,n=85;(3)略.
【解析】
(1)先求出B班人数,根据两班人数相同可求出A班70≤x<80组的人数,补全统计图即可;
(2)根据中位数的定义求解即可;
(3)可以从中位数和方差的角度分析,合理即可.
【详解】
解:(1)A、B两班学生人数=5+2+3+22+8=40人,
A班70≤x<80组的人数=40-1-7-13-9=10人,
A、B两班学生数学成绩频数分布直方图如下:
(2)根据中位数的定义可得:m==81,n==85;
(3)从中位数的角度看,B班学生的数学成绩比A班学生的数学成绩好;
从方差的角度看,A班学生的数学成绩比B班学生的数学成绩稳定.
【点睛】
本题考查了条形统计图、求中位数以及利用平均数、中位数、方差作决策等知识,能够从统计图中获取有用信息是解题关键.
23、(1)见解析;(2)90°;(3)解题思路见解析.
【解析】
(1)将线段AD绕点A逆时针方向旋转90°,得到线段AE,连结EC.
(2)先判定△ABD≌△ACE,即可得到,再根据,即可得出;
(3)连接DE,由于△ADE为等腰直角三角形,所以可求;由, ,可求的度数和的度数,从而可知DF的长;过点A作于点H,在Rt△ADH中,由,AD=1可求AH、DH的长;由DF、DH的长可求HF的长;在Rt△AHF中,由AH和HF,利用勾股定理可求AF的长.
【详解】
解:如图,
线段AD绕点A逆时针方向旋转,得到线段AE.
,,
.
,
.
,
在和中
,
≌.
,
中,,,
.
;
Ⅰ连接DE,由于为等腰直角三角形,所以可求;
Ⅱ由,,可求的度数和的度数,从而可知DF的长;
Ⅲ过点A作于点H,在中,由,可求AH、DH的长;
Ⅳ由DF、DH的长可求HF的长;
Ⅴ在中,由AH和HF,利用勾股定理可求AF的长.
故答案为(1)见解析;(2)90°;(3)解题思路见解析.
【点睛】
本题主要考查旋转的性质,等腰直角三角形的性质的运用,解题的关键是要注意对应点与旋转中心所连线段的夹角等于旋转角.
24、;(2)骑自行车的学生先到达百花公园,先到了10分钟.
【解析】
(1)根据函数图象中的数据可以求得关于的函数解析式;
(2)根据函数图象中的数据和题意可以分别求得步行学生和骑自行车学生到达百花公园的时间,从而可以解答本题.
【详解】
解:(1)设关于的函数解析式是,
,得,
即关于的函数解析式是;
(2)由图象可知,
步行的学生的速度为:千米/分钟,
步行同学到达百花公园的时间为:(分钟),
当时, ,得,
,
答:骑自行车的学生先到达百花公园,先到了10分钟.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.
25、;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.
【解析】
(1)根据按每千克元的市场价收购了这种苹果千克,此后每天每千克苹果价格会上涨元,进而得出天后每千克苹果的价格为元与的函数关系;
(2)根据每千克售价乘以销量等于销售总金额,求出即可;
(3)利用总售价-成本-费用=利润,进而求出即可.
【详解】
根据题意知,;
.
当时,最大利润12500元,
答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.
【点睛】
此题主要考查了二次函数的应用以及二次函数最值求法,得出与的函数关系是解题关键.
26、(1)10%;(2)方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米,理由见解析
【解析】
(1)设3、4两月平均每月下调的百分率为x,根据下降率公式列方程解方程求出答案;
(2)分别计算出方案一与方案二的费用相比较即可;
(3)根据(1)的答案计算出6月份的价格即可得到答案.
【详解】
(1)设3、4两月平均每月下调的百分率为x,
由题意得:7500(1﹣x)2=6075,
解得:x1=0.1=10%,x2=1.9(舍),
答:3、4两月平均每月下调的百分率是10%;
(2)方案一:6075×100×0.98=595350(元),
方案二:6075×100﹣100×1.5×24=603900(元),
∵595350<603900,
∴方案一更优惠,小颖选择方案一:打9.8折购买;
(3)不会跌破4800元/平方米
因为由(1)知:平均每月下调的百分率是10%,
所以:6075(1﹣10%)2=4920.75(元/平方米),
∵4920.75>4800,
∴6月份该楼盘商品房成交均价不会跌破4800元/平方米.
【点睛】
此题考查一元二次方程的实际应用,方案比较计算,正确理解题意并列出方程解答问题是解题的关键.
27、 (1)80,135°,条形统计图见解析;(2)825人;(3)图表见解析,(抽到1男1女).
【解析】
试题分析:(1)、根据“中”的人数和百分比得出总人数,然后求出优所占的百分比,得出圆心角的度数;(2)、根据题意得出“良”和“优”两种所占的百分比,从而得出全校的总数;(3)、根据题意利用列表法或者树状图法画出所有可能出现的情况,然后根据概率的计算法则求出概率.
试题解析:(1)80,135°; 条形统计图如图所示
(2)该校对安全知识达到“良”程度的人数:(人)
(3)解法一:列表如下:
所有等可能的结果为20种,其中抽到一男一女的为12种,
所以(抽到1男1女).
女1
女2
女3
男1
男2
女1
---
女2女1
女3女1
男1女1
男2女1
女2
女1女2
---
女3女2
男1女2
男2女2
女3
女1女3
女2女3
---
男1女3
男2女3
男1
女1男1
女2男1
女3男1
---
男2男1
男2
女1男2
女2男2
女3男2
男1男2
---
解法二:画树状图如下:
所有等可能的结果为20种,其中抽到一男一女的为12种,
所以(抽到1男1女).
浙江省绍兴市皋埠镇中学2023-2024学年数学九上期末统考试题含答案: 这是一份浙江省绍兴市皋埠镇中学2023-2024学年数学九上期末统考试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,已知等内容,欢迎下载使用。
浙江省绍兴市皋埠镇中学2023-2024学年数学九上期末统考模拟试题含答案: 这是一份浙江省绍兴市皋埠镇中学2023-2024学年数学九上期末统考模拟试题含答案,共9页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
2023-2024学年浙江省绍兴市皋埠镇中学数学八上期末学业质量监测模拟试题含答案: 这是一份2023-2024学年浙江省绍兴市皋埠镇中学数学八上期末学业质量监测模拟试题含答案,共7页。试卷主要包含了计算2n•3的结果是,下面计算正确的是等内容,欢迎下载使用。