终身会员
搜索
    上传资料 赚现金

    江西省南昌石埠初级中学2021-2022学年中考数学押题卷含解析

    立即下载
    加入资料篮
    江西省南昌石埠初级中学2021-2022学年中考数学押题卷含解析第1页
    江西省南昌石埠初级中学2021-2022学年中考数学押题卷含解析第2页
    江西省南昌石埠初级中学2021-2022学年中考数学押题卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江西省南昌石埠初级中学2021-2022学年中考数学押题卷含解析

    展开

    这是一份江西省南昌石埠初级中学2021-2022学年中考数学押题卷含解析,共22页。试卷主要包含了下列运算结果正确的是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.半径为的正六边形的边心距和面积分别是(  )
    A., B.,
    C., D.,
    2.如图,在⊙O中,弦AB=CD,AB⊥CD于点E,已知CE•ED=3,BE=1,则⊙O的直径是(  )

    A.2 B. C.2 D.5
    3.下列四个图形中既是轴对称图形,又是中心对称图形的是(  )
    A. B. C. D.
    4.给出下列各数式,① ② ③ ④ 计算结果为负数的有(  )
    A.1个 B.2个 C.3个 D.4个
    5.小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为(  )
    A.91,88 B.85,88 C.85,85 D.85,84.5
    6.已知x=2是关于x的一元二次方程x2﹣x﹣2a=0的一个解,则a的值为(  )
    A.0 B.﹣1 C.1 D.2
    7.下列运算结果正确的是(  )
    A.(x3﹣x2+x)÷x=x2﹣x B.(﹣a2)•a3=a6 C.(﹣2x2)3=﹣8x6 D.4a2﹣(2a)2=2a2
    8.(﹣1)0+|﹣1|=(  )
    A.2 B.1 C.0 D.﹣1
    9.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于(  )

    A.315° B.270° C.180° D.135°
    10.已知方程的两个解分别为、,则的值为()
    A. B. C.7 D.3
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,平行线AB、CD被直线EF所截,若∠2=130°,则∠1=_____.

    12.若关于x的一元二次方程x2+2x﹣m2﹣m=0(m>0),当m=1、2、3、…、2018时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,…,α2018、β2018,则:的值为_____.
    13.下列图形是用火柴棒摆成的“金鱼”,如果第1个图形需要8根火柴,则第2个图形需要14根火柴,第根图形需要____________根火柴.

    14.用配方法将方程x2+10x﹣11=0化成(x+m)2=n的形式(m、n为常数),则m+n=_____.
    15.如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A,B,C,则ac的值是________.

    16.如图,在两个同心圆中,三条直径把大、小圆都分成相等的六个部分,若随意向圆中投球,球落在黑色区域的概率是______.

    17.若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为______.
    三、解答题(共7小题,满分69分)
    18.(10分)已知C为线段上一点,关于x的两个方程与的解分别为线段的长,当时,求线段的长;若C为线段的三等分点,求m的值.
    19.(5分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
    (1)求商场经营该商品原来一天可获利润多少元?
    (2)设后来该商品每件降价x元,商场一天可获利润y元.
    ①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
    ②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.
    20.(8分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量(件与销售价(元/件)之间的函数关系如图所示.求与之间的函数关系式,并写出自变量的取值范围;求每天的销售利润W(元与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?

    21.(10分)(1)化简:
    (2)解不等式组.
    22.(10分)如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.
    分别求出直线AB和这条抛物线的解析式.若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.
    23.(12分)对于平面直角坐标系中的点,将它的纵坐标与横坐标的比称为点的“理想值”,记作.如的“理想值”.

    (1)①若点在直线上,则点的“理想值”等于_______;
    ②如图,,的半径为1.若点在上,则点的“理想值”的取值范围是_______.
    (2)点在直线上,的半径为1,点在上运动时都有,求点的横坐标的取值范围;
    (3),是以为半径的上任意一点,当时,画出满足条件的最大圆,并直接写出相应的半径的值.(要求画图位置准确,但不必尺规作图)
    24.(14分)如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.

    (1)若直线经过、两点,求直线和抛物线的解析式;
    (2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;
    (3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    首先根据题意画出图形,易得△OBC是等边三角形,继而可得正六边形的边长为R,然后利用解直角三角形求得边心距,又由S正六边形=求得正六边形的面积.
    【详解】
    解:如图,O为正六边形外接圆的圆心,连接OB,OC,过点O作OH⊥BC于H,

    ∵六边形ABCDEF是正六边形,半径为,
    ∴∠BOC=,
    ∵OB=OC=R,
    ∴△OBC是等边三角形,
    ∴BC=OB=OC=R,
    ∵OH⊥BC,
    ∴在中,,
    即,
    ∴,即边心距为;
    ∵,
    ∴S正六边形=,
    故选:A.
    【点睛】
    本题考查了正多边形和圆的知识;求得正六边形的中心角为60°,得到等边三角形是正确解答本题的关键.
    2、C
    【解析】
    作OH⊥AB于H,OG⊥CD于G,连接OA,根据相交弦定理求出EA,根据题意求出CD,根据垂径定理、勾股定理计算即可.
    【详解】
    解:作OH⊥AB于H,OG⊥CD于G,连接OA,
    由相交弦定理得,CE•ED=EA•BE,即EA×1=3,
    解得,AE=3,
    ∴AB=4,
    ∵OH⊥AB,
    ∴AH=HB=2,
    ∵AB=CD,CE•ED=3,
    ∴CD=4,
    ∵OG⊥CD,
    ∴EG=1,
    由题意得,四边形HEGO是矩形,
    ∴OH=EG=1,
    由勾股定理得,OA=,
    ∴⊙O的直径为,
    故选C.

    【点睛】
    此题考查了相交弦定理、垂径定理、勾股定理、矩形的判定与性质;根据图形作出相应的辅助线是解本题的关键.
    3、D
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A、是轴对称图形,不是中心对称图形,故此选项错误;
    B、是轴对称图形,不是中心对称图形,故此选项错误;
    C、是轴对称图形,不是中心对称图形,故此选项错误;
    D、是轴对称图形,也是中心对称图形,故此选项正确.
    故选D.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    4、B
    【解析】
    ∵①;②;③;④;
    ∴上述各式中计算结果为负数的有2个.
    故选B.
    5、D
    【解析】
    试题分析:根据众数的定义:出现次数最多的数,中位数定义:把所有的数从小到大排列,位置处于中间的数,即可得到答案.众数出现次数最多的数,85出现了2次,次数最多,所以众数是:85,
    把所有的数从小到大排列:76,82,84,85,85,91,位置处于中间的数是:84,85,因此中位数是:(85+84)÷2=84.5,故选D.
    考点:众数,中位数
    点评:此题主要考查了众数与中位数的意义,关键是正确把握两种数的定义,即可解决问题
    6、C
    【解析】
    试题分析:把方程的解代入方程,可以求出字母系数a的值.
    ∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.
    故本题选C.
    【考点】一元二次方程的解;一元二次方程的定义.
    7、C
    【解析】
    根据多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则计算可得.
    【详解】
    A、(x3-x2+x)÷x=x2-x+1,此选项计算错误;
    B、(-a2)•a3=-a5,此选项计算错误;
    C、(-2x2)3=-8x6,此选项计算正确;
    D、4a2-(2a)2=4a2-4a2=0,此选项计算错误.
    故选:C.
    【点睛】
    本题主要考查整式的运算,解题的关键是掌握多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则.
    8、A
    【解析】
    根据绝对值和数的0次幂的概念作答即可.
    【详解】
    原式=1+1=2
    故答案为:A.
    【点睛】
    本题考查的知识点是绝对值和数的0次幂,解题关键是熟记数的0次幂为1.
    9、B
    【解析】
    利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和解答.
    【详解】
    如图,

    ∵∠1、∠2是△CDE的外角,
    ∴∠1=∠4+∠C,∠2=∠3+∠C,
    即∠1+∠2=2∠C+(∠3+∠4),
    ∵∠3+∠4=180°-∠C=90°,
    ∴∠1+∠2=2×90°+90°=270°.
    故选B.
    【点睛】
    此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.
    10、D
    【解析】
    由根与系数的关系得出x1+x2=5,x1•x2=2,将其代入x1+x2−x1•x2中即可得出结论.
    【详解】
    解:∵方程x2−5x+2=0的两个解分别为x1,x2,
    ∴x1+x2=5,x1•x2=2,
    ∴x1+x2−x1•x2=5−2=1.
    故选D.
    【点睛】
    本题考查了根与系数的关系,解题的关键是根据根与系数的关系得出x1+x2=5,x1•x2=2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之和与两根之积是关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、50°
    【解析】
    利用平行线的性质推出∠EFC=∠2=130°,再根据邻补角的性质即可解决问题.
    【详解】
    ∵AB∥CD,
    ∴∠EFC=∠2=130°,
    ∴∠1=180°-∠EFC=50°,
    故答案为50°
    【点睛】
    本题考查平行线的性质、邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.
    12、.
    【解析】
    利用根与系数的关系得到α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.把原式变形,再代入,即可求出答案.
    【详解】
    ∵x2+2x-m2-m=0,m=1,2,3,…,2018,
    ∴由根与系数的关系得:α1+β1=-2,α1β1=-1×2;
    α2+β2=-2,α2β2=-2×3;

    α2018+β2018=-2,α2018β2018=-2018×1.
    ∴原式=
    =
    =2×()
    =2×(1-)
    =,
    故答案为.
    【点睛】
    本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.
    13、
    【解析】
    根据图形可得每增加一个金鱼就增加6根火柴棒即可解答.
    【详解】
    第一个图中有8根火柴棒组成,
    第二个图中有8+6个火柴棒组成,
    第三个图中有8+2×6个火柴组成,
    ……
    ∴组成n个系列正方形形的火柴棒的根数是8+6(n-1)=6n+2.
    故答案为6n+2
    【点睛】
    本题考查数字规律问题,通过归纳与总结,得到其中的规律是解题关键.
    14、1
    【解析】
    方程常数项移到右边,两边加上25配方得到结果,求出m与n的值即可.
    【详解】
    解:∵x2+10x-11=0,
    ∴x2+10x=11,
    则x2+10x+25=11+25,即(x+5)2=36,
    ∴m=5、n=36,
    ∴m+n=1,
    故答案为1.
    【点睛】
    此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.
    15、-1.
    【解析】
    设正方形的对角线OA长为1m,根据正方形的性质则可得出B、C坐标,代入二次函数y=ax1+c中,即可求出a和c,从而求积.
    【详解】
    设正方形的对角线OA长为1m,则B(﹣m,m),C(m,m),A(0,1m);
    把A,C的坐标代入解析式可得:c=1m①,am1+c=m②,
    ①代入②得:am1+1m=m,
    解得:a=-,
    则ac=-1m=-1.
    考点:二次函数综合题.
    16、
    【解析】
    根据几何概率的求法:球落在黑色区域的概率就是黑色区域的面积与总面积的比值.
    【详解】
    解:由图可知黑色区域与白色区域的面积相等,故球落在黑色区域的概率是=.
    【点睛】
    本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.
    17、-1
    【解析】
    根据关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根可知△=0,求出m的取值即可.
    【详解】
    解:由已知得△=0,即4+4m=0,解得m=-1.
    故答案为-1.
    【点睛】
    本题考查的是根的判别式,即一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.

    三、解答题(共7小题,满分69分)
    18、(1);(2)或1.
    【解析】
    (1)把m=2代入两个方程,解方程即可求出AC、BC的长,由C为线段上一点即可得AB的长;(2)分别解两个方程可得,,根据为线段的三等分点分别讨论为线段靠近点的三等分点和为线段靠近点的三等分点两种情况,列关于m的方程即可求出m的值.
    【详解】
    (1)当时,有,,
    由方程,解得,即.
    由方程,解得,即.
    因为为线段上一点,
    所以.
    (2)解方程,得,
    即.
    解方程,得,
    即.
    ①当为线段靠近点的三等分点时,
    则,即,解得.
    ②当为线段靠近点的三等分点时,
    则,即,解得.
    综上可得,或1.
    【点睛】
    本题考查一元一次方程的几何应用,注意讨论C点的位置,避免漏解是解题关键.
    19、(1)一天可获利润2000元;(2)①每件商品应降价2元或8元;②当2≤x≤8时,商店所获利润不少于2160元.
    【解析】
    :(1)原来一天可获利:20×100=2000元;
    (2)①y=(20-x)(100+10x)=-10(x2-10x-200),
    由-10(x2-10x-200)=2160,
    解得:x1=2,x2=8,
    ∴每件商品应降价2或8元;
    ②观察图像可得
    20、(1) (2),,144元
    【解析】
    (1)利用待定系数法求解可得关于的函数解析式;
    (2)根据“总利润每件的利润销售量”可得函数解析式,将其配方成顶点式,利用二次函数的性质进一步求解可得.
    【详解】
    (1)设与的函数解析式为,
    将、代入,得:,
    解得:,
    所以与的函数解析式为;
    (2)根据题意知,


    当时,随的增大而增大,

    当时,取得最大值,最大值为144,
    答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.
    【点睛】
    本题考查了二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.
    21、(1);(2)﹣2<x<1
    【解析】
    (1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;
    (2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.
    【详解】
    (1)原式=;
    (2)不等式组整理得:,
    则不等式组的解集为﹣2<x<1.
    【点睛】
    此题考查计算能力,(1)考查分式的化简,正确将分子与分母分解因式及按照正确运算顺序进行计算是解题的关键;(2)是解不等式组,注意系数化为1时乘或除以的是负数时要变号.
    22、 (1)抛物线的解析式是.直线AB的解析式是.
    (2) .
    (3)P点的横坐标是或.
    【解析】
    (1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,﹣3)分别代入y=x2+mx+n与y=kx+b,得到关于m、n的两个方程组,解方程组即可;
    (2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根据二次函数的最值得到
    当t=﹣=时,PM最长为=,再利用三角形的面积公式利用S△ABM=S△BPM+S△APM计算即可;
    (3)由PM∥OB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;当P在第三象限:PM=OB=3,t2﹣3t=3,分别解一元二次方程即可得到满足条件的t的值.
    【详解】
    解:(1)把A(3,0)B(0,-3)代入,得
    解得
    所以抛物线的解析式是.
    设直线AB的解析式是,把A(3,0)B(0,)代入,得
    解得
    所以直线AB的解析式是.
    (2)设点P的坐标是(),则M(,),因为在第四象限,所以PM=,当PM最长时,此时
    ==.
    (3)若存在,则可能是:
    ①P在第四象限:平行四边形OBMP ,PM=OB=3, PM最长时,所以不可能.
    ②P在第一象限平行四边形OBPM: PM=OB=3,,解得,(舍去),所以P点的横坐标是.
    ③P在第三象限平行四边形OBPM:PM=OB=3,,解得(舍去),
    ①,所以P点的横坐标是.
    所以P点的横坐标是或.
    23、(1)①﹣3;②;(2);(3)
    【解析】
    (1)①把Q(1,a)代入y=x-4,可求出a值,根据理想值定义即可得答案;②由理想值越大,点与原点连线与轴夹角越大,可得直线与相切时理想值最大,与x中相切时,理想值最小,即可得答案;(2)根据题意,讨论与轴及直线相切时,LQ 取最小值和最大值,求出点横坐标即可;(3)根据题意将点转化为直线,点理想值最大时点在上,分析图形即可.
    【详解】
    (1)①∵点在直线上,
    ∴,
    ∴点的“理想值”=-3,
    故答案为:﹣3.
    ②当点在与轴切点时,点的“理想值”最小为0.
    当点纵坐标与横坐标比值最大时,的“理想值”最大,此时直线与切于点,
    设点Q(x,y),与x轴切于A,与OQ切于Q,
    ∵C(,1),
    ∴tan∠COA==,
    ∴∠COA=30°,
    ∵OQ、OA是的切线,
    ∴∠QOA=2∠COA=60°,
    ∴=tan∠QOA=tan60°=,
    ∴点的“理想值”为,

    故答案为:.
    (2)设直线与轴、轴的交点分别为点,点,
    当x=0时,y=3,
    当y=0时,x+3=0,解得:x=,
    ∴,.
    ∴,,
    ∴tan∠OAB=,
    ∴.
    ∵,
    ∴①如图,作直线.
    当与轴相切时,LQ=0,相应的圆心满足题意,其横坐标取到最大值.
    作轴于点,
    ∴,
    ∴.
    ∵的半径为1,
    ∴.
    ∴,
    ∴.
    ∴.

    ②如图
    当与直线相切时,LQ=,相应的圆心满足题意,其横坐标取到最小值.
    作轴于点,则.
    设直线与直线的交点为.
    ∵直线中,k=,
    ∴,
    ∴,点F与Q重合,
    则.
    ∵的半径为1,
    ∴.
    ∴.
    ∴,
    ∴.
    ∴.

    由①②可得,的取值范围是.
    (3)∵M(2,m),
    ∴M点在直线x=2上,
    ∵,
    ∴LQ取最大值时,=,
    ∴作直线y=x,与x=2交于点N,
    当M与ON和x轴同时相切时,半径r最大,
    根据题意作图如下:M与ON相切于Q,与x轴相切于E,
    把x=2代入y=x得:y=4,
    ∴NE=4,OE=2,ON==6,
    ∴∠MQN=∠NEO=90°,
    又∵∠ONE=∠MNQ,
    ∴,
    ∴,即,
    解得:r=.
    ∴最大半径为.

    【点睛】
    本题是一次函数和圆的综合题,主要考查了一次函数和圆的切线的性质,解答时要注意做好数形结合,根据图形进行分类讨论.
    24、(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或.
    【解析】
    分析:(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;
    (2)设直线BC与对称轴x=-1的交点为M,此时MA+MC的值最小.把x=-1代入直线y=x+3得y的值,即可求出点M坐标;
    (3)设P(-1,t),又因为B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.
    详解:(1)依题意得:,解得:,
    ∴抛物线的解析式为.
    ∵对称轴为,且抛物线经过,
    ∴把、分别代入直线,
    得,解之得:,
    ∴直线的解析式为.

    (2)直线与对称轴的交点为,则此时的值最小,把代入直线得,
    ∴.即当点到点的距离与到点的距离之和最小时的坐标为.
    (注:本题只求坐标没说要求证明为何此时的值最小,所以答案未证明的值最小的原因).
    (3)设,又,,
    ∴,,,
    ①若点为直角顶点,则,即:解得:,
    ②若点为直角顶点,则,即:解得:,
    ③若点为直角顶点,则,即:解得:
    ,.
    综上所述的坐标为或或或.
    点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.

    相关试卷

    江西省南昌石埠初级中学2023-2024学年九年级数学第一学期期末调研模拟试题含答案:

    这是一份江西省南昌石埠初级中学2023-2024学年九年级数学第一学期期末调研模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,如果点A,下列说法正确的是等内容,欢迎下载使用。

    江西南昌石埠中学2021-2022学年中考数学五模试卷含解析:

    这是一份江西南昌石埠中学2021-2022学年中考数学五模试卷含解析,共23页。试卷主要包含了答题时请按要求用笔,的倒数是,一、单选题等内容,欢迎下载使用。

    2022年江西省南昌市进贤县中考押题数学预测卷含解析:

    这是一份2022年江西省南昌市进贤县中考押题数学预测卷含解析,共22页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map