广西省各地区2022年中考数学真题按题型难易度分类汇编-03填空题
展开广西省各地区2022年中考数学真题按题型难易度分类汇编-03填空题
一.正数和负数(共1小题)
1.(2022•百色)负数的概念最早出现在中国古代著名的数学专著《九章算术》中,负数与对应的正数“数量相等,意义相反”,如果向东走5米,记作+5米,那么向西走5米,可记作 米.
二.相反数(共1小题)
2.(2022•河池)﹣2022的相反数是 .
三.有理数的除法(共1小题)
3.(2022•玉林)计算:2÷(﹣2)= .
四.非负数的性质:算术平方根(共1小题)
4.(2022•贺州)若实数m,n满足|m﹣n﹣5|+=0,则3m+n= .
五.代数式求值(共2小题)
5.(2022•梧州)若x=1,则3x﹣2= .
6.(2022•广西)阅读材料:整体代值是数学中常用的方法.例如“已知3a﹣b=2,求代数式6a﹣2b﹣1的值.”可以这样解:6a﹣2b﹣1=2(3a﹣b)﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x=2是关于x的一元一次方程ax+b=3的解,则代数式4a2+4ab+b2+4a+2b﹣1的值是 .
六.合并同类项(共1小题)
7.(2022•玉林)计算:3a﹣a= .
七.因式分解-提公因式法(共2小题)
8.(2022•百色)因式分解:ax+ay= .
9.(2022•桂林)因式分解:a2+3a= .
八.提公因式法与公式法的综合运用(共2小题)
10.(2022•贵港)因式分解:a3﹣a= .
11.(2022•贺州)因式分解:3m2﹣12= .
九.分式的值为零的条件(共1小题)
12.(2022•广西)当x= 时,分式的值为零.
一十.二次根式有意义的条件(共3小题)
13.(2022•河池)若二次根式有意义,则a的取值范围是 .
14.(2022•贵港)若在实数范围内有意义,则实数x的取值范围是 .
15.(2022•贺州)若在实数范围内有意义,则实数x的取值范围是 .
一十一.二次根式的性质与化简(共1小题)
16.(2022•广西)化简:= .
一十二.一元一次方程的应用(共1小题)
17.(2022•百色)小韦同学周末的红色之旅,坐爸爸的车去百色起义纪念馆,从家里行驶7千米后,进入高速公路,在高速公路上保持匀速行驶,小韦记录高速公路上行驶的时间(t)和路程(s)数据如表,按照这个速度行驶了2小时进入高速路出口匝道,再行驶5千米到达纪念馆,则小韦家到纪念馆的路程是 千米.
t(小时)
0.2
0.6
0.8
s(千米)
20
60
80
一十三.解一元二次方程-因式分解法(共1小题)
18.(2022•梧州)一元二次方程(x﹣2)(x+7)=0的根是 .
一十四.一次函数图象上点的坐标特征(共1小题)
19.(2022•梧州)在平面直角坐标系中,请写出直线y=2x上的一个点的坐标 .
一十五.反比例函数系数k的几何意义(共3小题)
20.(2022•河池)如图,点P(x,y)在双曲线y=的图象上,PA⊥x轴,垂足为A,若S△AOP=2,则该反比例函数的解析式为 .
21.(2022•玉林)如图,点A在双曲线y=(k>0,x>0)上,点B在直线l:y=mx﹣2b(m>0,b>0)上,A与B关于x轴对称,直线l与y轴交于点C,当四边形AOCB是菱形时,有以下结论:
①A(b,b)
②当b=2时,k=4
③m=
④S四边形AOCB=2b2
则所有正确结论的序号是 .
22.(2022•桂林)如图,点A在反比例函数y=的图象上,且点A的横坐标为a(a<0),AB⊥y轴于点B,若△AOB的面积是3,则k的值是 .
一十六.反比例函数与一次函数的交点问题(共1小题)
23.(2022•梧州)如图,在平面直角坐标系中,一次函数y1=kx+b的图象与反比例函数y2=的图象交于点A(﹣2,2),B(n,﹣1).当y1<y2时,x的取值范围是 .
一十七.二次函数图象上点的坐标特征(共1小题)
24.(2022•贵港)已知二次函数y=ax2+bx+c(a≠0)图象的一部分如图所示,该函数图象经过点(﹣2,0),对称轴为直线x=﹣.对于下列结论:①abc<0;②b2﹣4ac>0;③a+b+c=0;④am2+bm<(a﹣2b)(其中m≠﹣);⑤若A(x1,y1)和B(x2,y2)均在该函数图象上,且x1>x2>1,则y1>y2.其中正确结论的个数共有 个.
一十八.两点间的距离(共1小题)
25.(2022•桂林)如图,点C是线段AB的中点,若AC=2cm,则AB= cm.
一十九.角的计算(共1小题)
26.(2022•百色)如图摆放一副三角板,直角顶点重合,直角边所在直线分别重合,那么∠BAC的大小为 °.
二十.余角和补角(共1小题)
27.(2022•玉林)已知:α=60°,则α的余角是 °.
二十一.对顶角、邻补角(共1小题)
28.(2022•桂林)如图,直线l1,l2相交于点O,∠1=70°,则∠2= °.
二十二.三角形中位线定理(共1小题)
29.(2022•梧州)如图,在△ABC中,∠ACB=90°,点D,E分别是AB,AC边上的中点,连接CD,DE.如果AB=5m,BC=3m,那么CD+DE的长是 m.
二十三.正方形的性质(共1小题)
30.(2022•广西)如图,在正方形ABCD中,AB=4,对角线AC,BD相交于点O.点E是对角线AC上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F为CD的中点,则△EGH′的周长是 .
二十四.三角形的外接圆与外心(共1小题)
31.(2022•玉林)如图,在5×7网格中,各小正方形边长均为1,点O,A,B,C,D,E均在格点上,点O是△ABC的外心,在不添加其他字母的情况下,则除△ABC外把你认为外心也是O的三角形都写出来 .
二十五.正多边形和圆(共1小题)
32.(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大于OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA=1,则,AE,AB所围成的阴影部分面积为 .
二十六.扇形面积的计算(共2小题)
33.(2022•贵港)如图,在▱ABCD中,AD=AB,∠BAD=45°,以点A为圆心、AD为半径画弧交AB于点E,连接CE,若AB=3,则图中阴影部分的面积是 .
34.(2022•玉林)数学课上,老师将如图边长为1的正方形铁丝框变形成以A为圆心,AB为半径的扇形(铁丝的粗细忽略不计),则所得扇形DAB的面积是 .
二十七.轴对称-最短路线问题(共1小题)
35.(2022•贺州)如图,在矩形ABCD中,AB=8,BC=6,E,F分别是AD,AB的中点,∠ADC的平分线交AB于点G,点P是线段DG上的一个动点,则△PEF的周长最小值为 .
二十八.旋转的性质(共1小题)
36.(2022•贵港)如图,将△ABC绕点A逆时针旋转角α(0°<α<180°)得到△ADE,点B的对应点D恰好落在BC边上,若DE⊥AC,∠CAD=25°,则旋转角α的度数是 .
二十九.坐标与图形变化-旋转(共1小题)
37.(2022•贺州)如图,在平面直角坐标系中,△OAB为等腰三角形,OA=AB=5,点B到x轴的距离为4,若将△OAB绕点O逆时针旋转90°,得到△OA′B′,则点B′的坐标为 .
三十.相似三角形的应用(共2小题)
38.(2022•百色)数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为 米.
39.(2022•广西)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是 米.
三十一.解直角三角形(共1小题)
40.(2022•河池)如图,把边长为1:2的矩形ABCD沿长边BC,AD的中点E,F对折,得到四边形ABEF,点G,H分别在BE,EF上,且BG=EH=BE=2,AG与BH交于点O,N为AF的中点,连接ON,作OM⊥ON交AB于点M,连接MN,则tan∠AMN= .
三十二.解直角三角形的应用(共1小题)
41.(2022•桂林)如图,某雕塑MN位于河段OA上,游客P在步道上由点O出发沿OB方向行走.已知∠AOB=30°,MN=2OM=40m,当观景视角∠MPN最大时,游客P行走的距离OP是 米.
三十三.加权平均数(共1小题)
42.(2022•百色)学校为落实立德树人,发展素质教育,加强美育,需要招聘两位艺术老师,从学历、笔试、上课和现场答辩四个项目进行测试,以最终得分择优录取.甲、乙、丙三位应聘者的测试成绩(10分制)如表所记,如果四项得分按照“1:1:1:1”比例确定每人的最终得分,丙得分最高,甲与乙得分相同,分不出谁将被淘汰;鉴于教师行业应在“上课”项目上权重大一些(其他项目比例相同),为此设计了新的计分比例,你认为三位应聘者中 (填:甲、乙或丙)将被淘汰.
应聘者
成绩
项目
甲
乙
丙
学历
9
8
9
笔试
8
7
9
上课
7
8
8
现场答辩
8
9
8
三十四.概率公式(共2小题)
43.(2022•贵港)从﹣3,﹣2,2这三个数中任取两个不同的数,作为点的坐标,则该点落在第三象限的概率是 .
44.(2022•广西)如图,一个质地均匀的正五边形转盘,指针的位置固定,当转盘自由转动停止后,观察指针指向区域内的数(若指针正好指向分界线,则重新转一次),这个数是一个奇数的概率是 .
三十五.列表法与树状图法(共1小题)
45.(2022•贺州)一枚质地均匀的骰子,六个面分别标有数字1,2,3,4,5,6.连续抛掷骰子两次,第一次正面朝上的数字作为十位数,第二次正面朝上的数字作为个位数,则这个两位数能被3整除的概率为 .
三十六.利用频率估计概率(共1小题)
46.(2022•桂林)当重复试验次数足够多时,可用频率来估计概率.历史上数学家皮尔逊(Pearson)曾在实验中掷均匀的硬币24000次,正面朝上的次数是12012次,频率约为0.5,则掷一枚均匀的硬币,正面朝上的概率是 .
参考答案与试题解析
一.正数和负数(共1小题)
1.(2022•百色)负数的概念最早出现在中国古代著名的数学专著《九章算术》中,负数与对应的正数“数量相等,意义相反”,如果向东走5米,记作+5米,那么向西走5米,可记作 ﹣5 米.
【解答】解:因为向东和向西是具有相反的意义,向东记作正数,则向西就记作负数.
故正确答案为:﹣5.
二.相反数(共1小题)
2.(2022•河池)﹣2022的相反数是 2022 .
【解答】解:﹣2022的相反数是:2022.
故答案为:2022.
三.有理数的除法(共1小题)
3.(2022•玉林)计算:2÷(﹣2)= ﹣1 .
【解答】解:2÷(﹣2)
=﹣(2÷2)
=﹣1.
故答案为:﹣1.
四.非负数的性质:算术平方根(共1小题)
4.(2022•贺州)若实数m,n满足|m﹣n﹣5|+=0,则3m+n= 7 .
【解答】解:∵|m﹣n﹣5|+=0,
∴m﹣n﹣5=0,2m+n﹣4=0,
∴m=3,n=﹣2,
∴3m+n=9﹣2=7.
故答案为:7.
五.代数式求值(共2小题)
5.(2022•梧州)若x=1,则3x﹣2= 1 .
【解答】解:把x=1代入3x﹣2中,
原式=3×1﹣2=1.
故答案为:1.
6.(2022•广西)阅读材料:整体代值是数学中常用的方法.例如“已知3a﹣b=2,求代数式6a﹣2b﹣1的值.”可以这样解:6a﹣2b﹣1=2(3a﹣b)﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x=2是关于x的一元一次方程ax+b=3的解,则代数式4a2+4ab+b2+4a+2b﹣1的值是 14 .
【解答】解:∵x=2是关于x的一元一次方程ax+b=3的解,
∴2a+b=3,
∴b=3﹣2a,
∴4a2+4ab+b2+4a+2b﹣1
=4a2+4a(3﹣2a)+(3﹣2a)2+4a+2(3﹣2a)﹣1
=4a2+12a﹣8a2+9﹣12a+4a2+4a+6﹣4a﹣1
=14.
解法二:原式=(2a+b)2+2(2a+b)﹣1=32+2×3﹣1=14,
故答案为:14.
六.合并同类项(共1小题)
7.(2022•玉林)计算:3a﹣a= 2a .
【解答】解:3a﹣a=2a.
故答案为:2a.
七.因式分解-提公因式法(共2小题)
8.(2022•百色)因式分解:ax+ay= a(x+y) .
【解答】解:ax+ay=a(x+y).
故答案为:a(x+y).
9.(2022•桂林)因式分解:a2+3a= a(a+3) .
【解答】解:a2+3a=a(a+3).
故答案为:a(a+3).
八.提公因式法与公式法的综合运用(共2小题)
10.(2022•贵港)因式分解:a3﹣a= a(a+1)(a﹣1) .
【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),
故答案为:a(a+1)(a﹣1)
11.(2022•贺州)因式分解:3m2﹣12= 3(m+2)(m﹣2) .
【解答】解:3m2﹣12,
=3(m2﹣4),
=3(m+2)(m﹣2).
故答案为:3(m+2)(m﹣2).
九.分式的值为零的条件(共1小题)
12.(2022•广西)当x= 0 时,分式的值为零.
【解答】解:由题意得:
2x=0且x+2≠0,
∴x=0且x≠﹣2,
∴当x=0时,分式的值为零,
故答案为:0.
一十.二次根式有意义的条件(共3小题)
13.(2022•河池)若二次根式有意义,则a的取值范围是 a≥1 .
【解答】解:∵二次根式有意义,
∴a﹣1≥0,
解得:a≥1.
故答案为:a≥1.
14.(2022•贵港)若在实数范围内有意义,则实数x的取值范围是 x≥﹣1 .
【解答】解:根据题意得:x+1≥0,
∴x≥﹣1,
故答案为:x≥﹣1.
15.(2022•贺州)若在实数范围内有意义,则实数x的取值范围是 x≥5 .
【解答】解:式子在实数范围内有意义,则x﹣5≥0,
故实数x的取值范围是:x≥5.
故答案为:x≥5.
一十一.二次根式的性质与化简(共1小题)
16.(2022•广西)化简:= 2 .
【解答】解:===2.
故答案为:2.
一十二.一元一次方程的应用(共1小题)
17.(2022•百色)小韦同学周末的红色之旅,坐爸爸的车去百色起义纪念馆,从家里行驶7千米后,进入高速公路,在高速公路上保持匀速行驶,小韦记录高速公路上行驶的时间(t)和路程(s)数据如表,按照这个速度行驶了2小时进入高速路出口匝道,再行驶5千米到达纪念馆,则小韦家到纪念馆的路程是 212 千米.
t(小时)
0.2
0.6
0.8
s(千米)
20
60
80
【解答】解:设小韦家到纪念馆的路程是x千米,依题意有:
=2,
解得x=212.
故小韦家到纪念馆的路程是212千米.
故答案为:212.
一十三.解一元二次方程-因式分解法(共1小题)
18.(2022•梧州)一元二次方程(x﹣2)(x+7)=0的根是 x1=2,x2=﹣7 .
【解答】解:(x﹣2)(x+7)=0,
x﹣2=0或x+7=0,
x1=2,x2=﹣7,
故答案为:x1=2,x2=﹣7.
一十四.一次函数图象上点的坐标特征(共1小题)
19.(2022•梧州)在平面直角坐标系中,请写出直线y=2x上的一个点的坐标 (1,2) .
【解答】解:令x=1,则y=2,
∴直线y=2x经过点(1,2),
∴直线y=2x上的一个点的坐标为(1,2),
故答案为:(1,2)(答案不唯一).
一十五.反比例函数系数k的几何意义(共3小题)
20.(2022•河池)如图,点P(x,y)在双曲线y=的图象上,PA⊥x轴,垂足为A,若S△AOP=2,则该反比例函数的解析式为 y= .
【解答】解:∵点P(x,y)在双曲线y=的图象上,PA⊥x轴,
∴xy=k,OA=﹣x,PA=y.
∵S△AOP=2,
∴×AO•PA=2.
∴﹣x•y=4.
∴xy=﹣4,
∴k=xy=﹣4.
∴该反比例函数的解析式为y=.
故答案为:y=.
21.(2022•玉林)如图,点A在双曲线y=(k>0,x>0)上,点B在直线l:y=mx﹣2b(m>0,b>0)上,A与B关于x轴对称,直线l与y轴交于点C,当四边形AOCB是菱形时,有以下结论:
①A(b,b)
②当b=2时,k=4
③m=
④S四边形AOCB=2b2
则所有正确结论的序号是 ②③ .
【解答】解:如图,
①y=mx﹣2b中,当x=0时,y=﹣2b,
∴C(0,﹣2b),
∴OC=2b,
∵四边形AOCB是菱形,
∴AB=OC=OA=2b,
∵A与B关于x轴对称,
∴AB⊥OD,AD=BD=b,
∴OD==b,
∴A(b,b);
故①不正确;
②当b=2时,点A的坐标为(2,2),
∴k=2×2=4,
故②正确;
③∵A(b,b),A与B关于x轴对称,
∴B(b,﹣b),
∵点B在直线y=mx﹣2b上,
∴bm﹣2b=﹣b,
∴m=,
故③正确;
④菱形AOCB的面积=AB•OD=2b•b=2b2,
故④不正确;
所以本题结论正确的有:①②③;
故答案为:②③.
22.(2022•桂林)如图,点A在反比例函数y=的图象上,且点A的横坐标为a(a<0),AB⊥y轴于点B,若△AOB的面积是3,则k的值是 ﹣6 .
【解答】解:设点A的坐标为(a,),
∵△AOB的面积是3,
∴=3,
解得k=﹣6,
故答案为:﹣6.
一十六.反比例函数与一次函数的交点问题(共1小题)
23.(2022•梧州)如图,在平面直角坐标系中,一次函数y1=kx+b的图象与反比例函数y2=的图象交于点A(﹣2,2),B(n,﹣1).当y1<y2时,x的取值范围是 ﹣2<x<0或x>4 .
【解答】解:∵反比例函数y2=的图象经过点A(﹣2,2),B(n,﹣1),
∴﹣1×n=(﹣2)×2,
∴n=4.
∴B(4,﹣1).
由图象可知:第二象限中点A的右侧部分和第四象限中点B右侧的部分满足y1<y2,
∴当y1<y2时,x的取值范围是﹣2<x<0或x>4.
故答案为:﹣2<x<0或x>4.
一十七.二次函数图象上点的坐标特征(共1小题)
24.(2022•贵港)已知二次函数y=ax2+bx+c(a≠0)图象的一部分如图所示,该函数图象经过点(﹣2,0),对称轴为直线x=﹣.对于下列结论:①abc<0;②b2﹣4ac>0;③a+b+c=0;④am2+bm<(a﹣2b)(其中m≠﹣);⑤若A(x1,y1)和B(x2,y2)均在该函数图象上,且x1>x2>1,则y1>y2.其中正确结论的个数共有 3 个.
【解答】解:∵抛物线的对称轴为直线x=﹣,且抛物线与x轴的一个交点坐标为(﹣2,0),
∴抛物线与x轴的另一个坐标为(1,0),
把(﹣2,0)(1,0)代入y=ax2+bx+c(a≠0),可得:
,
解得,
∴a+b+c=a+a﹣2a=0,故③正确;
∵抛物线开口方向向下,
∴a<0,
∴b=a<0,c=﹣2a>0,
∴abc>0,故①错误;
∵抛物线与x轴两个交点,
∴当y=0时,方程ax2+bx+c=0有两个不相等的实数根,
∴b2﹣4ac>0,故②正确;
∵am2+bm=am2+am=a(m+)2﹣a,
(a﹣2b)=(a﹣2a)=﹣a,
∴am2+bm﹣(a﹣2b)=a(m+)2,
又∵a<0,m≠﹣,
∴a(m+)2<0,
即am2+bm<(a﹣2b)(其中m≠﹣),故④正确;
∵抛物线的对称轴为直线x=﹣,且抛物线开口朝下,
∴可知二次函数,在x>﹣时,y随x的增大而减小,
∵x1>x2>1>﹣,
∴y1<y2,故⑤错误,
正确的有②③④,共3个,
故答案为:3.
一十八.两点间的距离(共1小题)
25.(2022•桂林)如图,点C是线段AB的中点,若AC=2cm,则AB= 4 cm.
【解答】解:根据中点的定义可得:AB=2AC=2×2=4cm,
故答案为:4.
一十九.角的计算(共1小题)
26.(2022•百色)如图摆放一副三角板,直角顶点重合,直角边所在直线分别重合,那么∠BAC的大小为 135 °.
【解答】解:根据题意可得,
∠BAC=90°+45°=135°.
故答案为:135.
二十.余角和补角(共1小题)
27.(2022•玉林)已知:α=60°,则α的余角是 30 °.
【解答】解:90°﹣60°=30°,
故答案为:30.
二十一.对顶角、邻补角(共1小题)
28.(2022•桂林)如图,直线l1,l2相交于点O,∠1=70°,则∠2= 70 °.
【解答】解:∵∠1和∠2是一对顶角,
∴∠2=∠1=70°.
故答案为:70.
二十二.三角形中位线定理(共1小题)
29.(2022•梧州)如图,在△ABC中,∠ACB=90°,点D,E分别是AB,AC边上的中点,连接CD,DE.如果AB=5m,BC=3m,那么CD+DE的长是 4 m.
【解答】解:∵点D,E分别是AB,AC边上的中点,
∴DE是△ABC的中位线,
∴DE=BC,
∵BC=3m,
∴DE=1.5m,
∵∠ACB=90°,
∴CD=AB,
∵AB=5m,
∴CD=2.5m,
∴CD+DE=2.5+1.5=4(m),
故答案为:4.
二十三.正方形的性质(共1小题)
30.(2022•广西)如图,在正方形ABCD中,AB=4,对角线AC,BD相交于点O.点E是对角线AC上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F为CD的中点,则△EGH′的周长是 5+ .
【解答】解:如图,过点E作EM⊥BC于M,作EN⊥CD于N,过点F作FP⊥AC于P,连接GH,
∵将△EFH沿EF翻折得到△EFH′,
∴△EGH'≌△EGH,
∵四边形ABCD是正方形,
∴AB=CD=BC=4,∠BCD=90°,∠ACD=∠ACB=45°,
∴BD=BC=8,△CPF是等腰直角三角形,
∵F是CD的中点,
∴CF=CD=2,
∴CP=PF=2,OB=BD=4,
∵∠ACD=∠ACB,EM⊥BC,EN⊥CD,
∴EM=EN,∠EMC=∠ENC=∠BCD=90°,
∴∠MEN=90°,
∵EF⊥BE,
∴∠BEF=90°,
∴∠BEM=∠FEN,
∵∠BME=∠FNE,
∴△BME≌△FNE(ASA),
∴EB=EF,
∵∠BEO+∠PEF=∠PEF+∠EFP=90°,
∴∠BEO=∠EFP,
∵∠BOE=∠EPF=90°,
∴△BEO≌△EFP(AAS),
∴OE=PF=2,OB=EP=4,
∵tan∠OEG==,即=,
∴OG=1,
∴EG==,
∵OB∥FP,
∴∠OBH=∠PFH,
∴tan∠OBH=tan∠PFH,
∴=,
∴==2,
∴OH=2PH,
∵OP=OC﹣PC=4﹣2=2,
∴OH=×2=,
在Rt△OGH中,由勾股定理得:GH==,
∴△EGH′的周长=△EGH的周长=EH+EG+GH=2+++=5+.
故答案为:5+.
二十四.三角形的外接圆与外心(共1小题)
31.(2022•玉林)如图,在5×7网格中,各小正方形边长均为1,点O,A,B,C,D,E均在格点上,点O是△ABC的外心,在不添加其他字母的情况下,则除△ABC外把你认为外心也是O的三角形都写出来 △ABD,△ACD,△BCD .
【解答】解:由图可知:
OA=,
OB=,
OC=,
OD=,
OE=,
∴OA=OB=OC=OD≠OE,
∴△ABD,△ACD,△BCD的外心都是点O,
故答案为:△ABD,△ACD,△BCD.
二十五.正多边形和圆(共1小题)
32.(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大于OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA=1,则,AE,AB所围成的阴影部分面积为 .
【解答】解:连接OA,
由题意可知,直线MN垂直平分线段OA,
∴EA=EO,
∵OA=OE,
∴△AOE为等边三角形,
∴∠AOE=60°,
∵四边形ABCD是⊙O的内接正四边形,
∴∠AOB=90°,
∴∠BOE=30°,
∵S弓形AOE=S扇形AOE﹣S△AOE,
∴S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB
=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB
=S扇形AOB﹣S扇形AOE+S△AOE﹣S△AOB
=S扇形BOE+S△AOE﹣S△AOB
=+﹣
=.
故答案为:.
二十六.扇形面积的计算(共2小题)
33.(2022•贵港)如图,在▱ABCD中,AD=AB,∠BAD=45°,以点A为圆心、AD为半径画弧交AB于点E,连接CE,若AB=3,则图中阴影部分的面积是 5﹣π .
【解答】解:过点D作DF⊥AB于点F,
∵AD=AB,∠BAD=45°,AB=3,
∴AD=×3=2,
∴DF=ADsin45°=2×=2,
∵AE=AD=2,
∴EB=AB−AE=,
∴S阴影=S▱ABCD−S扇形ADE−S△EBC
=3×2﹣﹣××2
=5﹣π,
故答案为:5﹣π.
34.(2022•玉林)数学课上,老师将如图边长为1的正方形铁丝框变形成以A为圆心,AB为半径的扇形(铁丝的粗细忽略不计),则所得扇形DAB的面积是 1 .
【解答】解:由题意的长=CD+BC=1+1=2,
S扇形ABD=••AB=×2×1=1,
故答案为:1.
二十七.轴对称-最短路线问题(共1小题)
35.(2022•贺州)如图,在矩形ABCD中,AB=8,BC=6,E,F分别是AD,AB的中点,∠ADC的平分线交AB于点G,点P是线段DG上的一个动点,则△PEF的周长最小值为 5+ .
【解答】解:如图,在DC上截取DT,使得DT=DE,连接FT,过点T作TH⊥AB于点H.
∵四边形ABCD是矩形,
∴∠A=∠ADT=90°,
∵∠AHT=90°,
∴四边形AHTD是矩形,
∵AE=DE=AD=3.AF=FB=AB=4,
∴AH=DT=3,HF=AF﹣AH=4﹣3=1,HT=AD=6,
∴FT===,
∵DG平分∠ADC,DE=DT,
∴E、T关于DG对称,
∴PE=PT,
∴PE+PF=PF+PT≥FT=,
∵EF===5,
∴△EFP的周长的最小值为5+,
故答案为:5+.
二十八.旋转的性质(共1小题)
36.(2022•贵港)如图,将△ABC绕点A逆时针旋转角α(0°<α<180°)得到△ADE,点B的对应点D恰好落在BC边上,若DE⊥AC,∠CAD=25°,则旋转角α的度数是 50° .
【解答】解:根据题意,
∵DE⊥AC,∠CAD=25°,
∴∠ADE=90°﹣25°=65°,
由旋转的性质可得∠B=∠ADE,AB=AD,
∴∠ADB=∠B=65°,
∴∠BAD=180°﹣65°﹣65°=50°,
∴旋转角α的度数是50°;
故答案为:50°.
二十九.坐标与图形变化-旋转(共1小题)
37.(2022•贺州)如图,在平面直角坐标系中,△OAB为等腰三角形,OA=AB=5,点B到x轴的距离为4,若将△OAB绕点O逆时针旋转90°,得到△OA′B′,则点B′的坐标为 (﹣4,8) .
【解答】解:过点B作BN⊥x轴,过点B′作B′M⊥y轴,
∴∠B′MO=∠BNO=90°,
∵OA=AB=5,点B到x轴的距离为4,
∴AN=3,
∴ON=8,
∵将△OAB绕点O逆时针旋转90°,得到△OA′B′,
∴∠BOB′=90°,OB=OB′,
∴∠BOA′+∠B′OA′=∠BOA+∠BOA′,
∴∠BOA=∠B′OA′,
∴△NOB≌△MOB′(AAS),
∴OM=ON=8,B′M=BN=4,
∴B′(﹣4,8),
故答案为:(﹣4,8).
三十.相似三角形的应用(共2小题)
38.(2022•百色)数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为 12 米.
【解答】解:设旗杆的高度为x米,
根据题意得:=,
解得x=12,
∴旗杆的高度为12米,
故答案为:12.
39.(2022•广西)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是 134 米.
【解答】解:据相同时刻的物高与影长成比例,
设金字塔的高度BO为x米,则可列比例为,,
解得:x=134,
经检验,x=134是原方程的解,
∴BO=134.
答:金字塔的高度BO是134米,
故答案为:134.
三十一.解直角三角形(共1小题)
40.(2022•河池)如图,把边长为1:2的矩形ABCD沿长边BC,AD的中点E,F对折,得到四边形ABEF,点G,H分别在BE,EF上,且BG=EH=BE=2,AG与BH交于点O,N为AF的中点,连接ON,作OM⊥ON交AB于点M,连接MN,则tan∠AMN= .
【解答】解:∵点E,F分别是BC,AD的中点,
∴AF=AD,BE=BC,
∵四边形ABCD是矩形,
∴∠A=90°,AD∥BC,AD=BC,
∴AF=BE=AD,
∴四边形ABEF是矩形,
由题意知,AD=2AB,
∴AF=AB,
∴矩形ABEF是正方形,
∴AB=BE,∠ABE=∠BEF=90°,
∵BG=EH,
∴△ABG≌△BEH(SAS),
∴∠BAG=∠EBH,
∴∠BAG+∠ABO=∠EBH+∠ABO=∠ABG=90°,
∴∠AOB=90°,
∵BG=EH=BE=2,
∴BE=5,
∴AF=5,
在Rt△ABG中,根据勾股定理得,AG==,
∵∠OAB=∠BAG,∠AOB=∠ABG,
∴△AOB∽△ABG,
∴=,
∴,
∴OA=,OB=,
∵OM⊥ON,
∴∠MON=90°=∠AOB,
∴∠BOM=∠AON,
∵∠BAG+∠FAG=90°,∠ABO+∠EBH=90°,∠BAG=∠EBH,
∴∠OBM=∠OAN,
∴△OBM∽△OAN,
∴,
∵点N是AF的中点,
∴AN=AF=,
∴,
∴BM=1,
∴AM=AB﹣BM=4,
在Rt△MAN中,tan∠AMN===,
故答案为:.
三十二.解直角三角形的应用(共1小题)
41.(2022•桂林)如图,某雕塑MN位于河段OA上,游客P在步道上由点O出发沿OB方向行走.已知∠AOB=30°,MN=2OM=40m,当观景视角∠MPN最大时,游客P行走的距离OP是 20 米.
【解答】解:如图,取MN的中点F,过点F作FE⊥OB于E,以直径MN作⊙F,
∵MN=2OM=40m,点F是MN的中点,
∴MF=FN=20m,OF=40m,
∵∠AOB=30°,EF⊥OB,
∴EF=20m,OE=EF=20m,
∴EF=MF,
又∵EF⊥OB,
∴OB是⊙F的切线,切点为E,
∴当点P与点E重合时,观景视角∠MPN最大,
此时OP=20m,
故答案为:20.
三十三.加权平均数(共1小题)
42.(2022•百色)学校为落实立德树人,发展素质教育,加强美育,需要招聘两位艺术老师,从学历、笔试、上课和现场答辩四个项目进行测试,以最终得分择优录取.甲、乙、丙三位应聘者的测试成绩(10分制)如表所记,如果四项得分按照“1:1:1:1”比例确定每人的最终得分,丙得分最高,甲与乙得分相同,分不出谁将被淘汰;鉴于教师行业应在“上课”项目上权重大一些(其他项目比例相同),为此设计了新的计分比例,你认为三位应聘者中 甲 (填:甲、乙或丙)将被淘汰.
应聘者
成绩
项目
甲
乙
丙
学历
9
8
9
笔试
8
7
9
上课
7
8
8
现场答辩
8
9
8
【解答】解:∵如果四项得分按照“1:1:1:1”比例确定每人的最终得分,丙得分最高,甲与乙得分相同,乙、丙的“上课”成绩大于甲的“上课”成绩,
∴“上课”项目上权重大一些(其他项目比例相同),则丙得分最高,甲得分最低,
∴三位应聘者中甲将被淘汰.
故答案为:甲.
三十四.概率公式(共2小题)
43.(2022•贵港)从﹣3,﹣2,2这三个数中任取两个不同的数,作为点的坐标,则该点落在第三象限的概率是 .
【解答】解:∵第三象限的点的坐标需要选两个负数,
∴该点落在第三象限的概率是×=,
故答案为:.
44.(2022•广西)如图,一个质地均匀的正五边形转盘,指针的位置固定,当转盘自由转动停止后,观察指针指向区域内的数(若指针正好指向分界线,则重新转一次),这个数是一个奇数的概率是 .
【解答】解:由图可知,
指针指向的区域有5种可能性,其中指向的区域内的数是奇数的可能性有3种,
∴这个数是一个奇数的概率是,
故答案为:.
三十五.列表法与树状图法(共1小题)
45.(2022•贺州)一枚质地均匀的骰子,六个面分别标有数字1,2,3,4,5,6.连续抛掷骰子两次,第一次正面朝上的数字作为十位数,第二次正面朝上的数字作为个位数,则这个两位数能被3整除的概率为 .
【解答】解:画树状图如下:
共有36种等可能的结果,其中所得两位数能被3整除的结果有12种,
∴两位数能被3整除的概率为 =,
故答案为:.
三十六.利用频率估计概率(共1小题)
46.(2022•桂林)当重复试验次数足够多时,可用频率来估计概率.历史上数学家皮尔逊(Pearson)曾在实验中掷均匀的硬币24000次,正面朝上的次数是12012次,频率约为0.5,则掷一枚均匀的硬币,正面朝上的概率是 0.5 .
【解答】解:当重复试验次数足够多时,频率逐渐稳定在0.5左右,
∴掷一枚均匀的硬币,正面朝上的概率是0.5.
故答案为:0.5.
江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-04填空题提升题: 这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-04填空题提升题,共36页。
江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-04填空题基础题②: 这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-04填空题基础题②,共22页。
贵州省各地区2022年中考数学真题按题型难易度分层分类汇编-03填空题(基础题): 这是一份贵州省各地区2022年中考数学真题按题型难易度分层分类汇编-03填空题(基础题),共23页。试卷主要包含了因式分解,分解因式,计算等内容,欢迎下载使用。