广西省各地区2022年中考数学真题按题型难易度分类汇编-05解答题中档题、提升题
展开广西省各地区2022年中考数学真题按题型难易度分类汇编-05解答题中档题、提升题
一.一次函数的应用(共1小题)
1.(2022•梧州)梧州市地处亚热带,盛产龙眼.新鲜龙眼的保质期短,若加工成龙眼干(又叫带壳圆肉)则有利于较长时间保存.已知3kg的新鲜龙眼在无损耗的情况下可以加工成1kg的龙眼干.
(1)若新鲜龙眼售价为12元/kg.在无损耗的情况下加工成龙眼干,使龙眼干的销售收益不低于新鲜龙眼的销售收益,则龙眼干的售价应不低于多少元/kg?
(2)在实践中,小苏发现当地在加工龙眼干的过程中新鲜龙眼有6%的损耗,为确保果农的利益,龙眼干的销售收益应不低于新鲜龙眼的销售收益,此时龙眼干的定价取最低整数价格.
市场调查还发现,新鲜龙眼以12元/kg最多能卖出100kg,超出部分平均售价是5元/kg,可售完.果农们都以这种方式出售新鲜龙眼.
设某果农有akg新鲜龙眼,他全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差为w元,请写出w与a的函数关系式.
二.二次函数的应用(共2小题)
2.(2022•广西)打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.
(1)求y与x的函数解析式,并写出自变量x的取值范围;
(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.
3.(2022•贺州)2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品.某商家以每套34元的价格购进一批冰墩墩和雪容融套件.若该产品每套的售价是48元时,每天可售出200套;若每套售价提高2元,则每天少卖4套.
(1)设冰墩墩和雪容融套件每套售价定为x元时,求该商品销售量y与x之间的函数关系式;
(2)求每套售价定为多少元时,每天销售套件所获利润W最大,最大利润是多少元?
三.二次函数综合题(共8小题)
4.(2022•贵港)如图,已知抛物线y=﹣x2+bx+c经过A(0,3)和B(,﹣)两点,直线AB与x轴相交于点C,P是直线AB上方的抛物线上的一个动点,PD⊥x轴交AB于点D.
(1)求该抛物线的表达式;
(2)若PE∥x轴交AB于点E,求PD+PE的最大值;
(3)若以A,P,D为顶点的三角形与△AOC相似,请直接写出所有满足条件的点P,点D的坐标.
5.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.
(1)求抛物线的表达式;
(2)求证:∠BOF=∠BDF;
(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.
6.(2022•梧州)如图,在平面直角坐标系中,直线y=﹣x﹣4分别与x,y轴交于点A,B,抛物线y=x2+bx+c恰好经过这两点.
(1)求此抛物线的解析式;
(2)若点C的坐标是(0,6),将△ACO绕着点C逆时针旋转90°得到△ECF,点A的对应点是点E.
①写出点E的坐标,并判断点E是否在此抛物线上;
②若点P是y轴上的任一点,求BP+EP取最小值时,点P的坐标.
7.(2022•桂林)如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B的左侧),与y轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ(点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.
(1)直接写出A,B,C三点的坐标;
(2)求CP+PQ+QB的最小值;
(3)过点P作PM⊥y轴于点M,当△CPM和△QBN相似时,求点Q的坐标.
8.(2022•河池)在平面直角坐标系中,抛物线L1:y=ax2+2x+b与x轴交于两点A,B(3,0),与y轴交于点C(0,3).
(1)求抛物线L1的函数解析式,并直接写出顶点D的坐标;
(2)如图,连接BD,若点E在线段BD上运动(不与B,D重合),过点E作EF⊥x轴于点F,设EF=m,问:当m为何值时,△BFE与△DEC的面积之和最小;
(3)若将抛物线L1绕点B旋转180°得抛物线L2,其中C,D两点的对称点分别记作M,N.问:在抛物线L2的对称轴上是否存在点P,使得以B,M,P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
9.(2022•广西)已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧).
(1)求点A,点B的坐标;
(2)如图,过点A的直线l:y=﹣x﹣1与抛物线的另一个交点为C,点P为抛物线对称轴上的一点,连接PA,PC,设点P的纵坐标为m,当PA=PC时,求m的值;
(3)将线段AB先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN,若抛物线y=a(﹣x2+2x+3)(a≠0)与线段MN只有一个交点,请直接写出a的取值范围.
10.(2022•贺州)如图,抛物线y=﹣x2+bx+c过点A(﹣1,0),B(3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)点P为抛物线对称轴上一动点,当△PCB是以BC为底边的等腰三角形时,求点P的坐标;
(3)在(2)条件下,是否存在点M为抛物线第一象限上的点,使得S△BCM=S△BCP?若存在,求出点M的横坐标;若不存在,请说明理由.
11.(2022•玉林)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.
(1)求抛物线的解析式;
(2)若点D为线段OC的中点,则△POD能否是等边三角形?请说明理由;
(3)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.
四.三角形综合题(共2小题)
12.(2022•贵港)已知:点C,D均在直线l的上方,AC与BD都是直线l的垂线段,且BD在AC的右侧,BD=2AC,AD与BC相交于点O.
(1)如图1,若连接CD,则△BCD的形状为 ,的值为 ;
(2)若将BD沿直线l平移,并以AD为一边在直线l的上方作等边△ADE.
①如图2,当AE与AC重合时,连接OE,若AC=,求OE的长;
②如图3,当∠ACB=60°时,连接EC并延长交直线l于点F,连接OF.求证:OF⊥AB.
13.(2022•广西)已知∠MON=α,点A,B分别在射线OM,ON上运动,AB=6.
(1)如图①,若α=90°,取AB中点D,点A,B运动时,点D也随之运动,点A,B,D的对应点分别为A′,B′,D′,连接OD,OD′.判断OD与OD′有什么数量关系?证明你的结论;
(2)如图②,若α=60°,以AB为斜边在其右侧作等腰直角三角形ABC,求点O与点C的最大距离;
(3)如图③,若α=45°,当点A,B运动到什么位置时,△AOB的面积最大?请说明理由,并求出△AOB面积的最大值.
五.平行四边形的性质(共2小题)
14.(2022•广西)如图,在▱ABCD中,BD是它的一条对角线.
(1)求证:△ABD≌△CDB;
(2)尺规作图:作BD的垂直平分线EF,分别交AD,BC于点E,F(不写作法,保留作图痕迹);
(3)连接BE,若∠DBE=25°,求∠AEB的度数.
15.(2022•桂林)如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF=DE.
(1)求证:BE=DF;
(2)求证:△ABE≌△CDF.
六.平行四边形的判定(共1小题)
16.(2022•河池)如图,点A,F,C,D在同一直线上,AB=DE,AF=CD,BC=EF.
(1)求证:∠ACB=∠DFE;
(2)连接BF,CE,直接判断四边形BFEC的形状.
七.切线的判定与性质(共2小题)
17.(2022•百色)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点M,作AD⊥MC,垂足为D,已知AC平分∠MAD.
(1)求证:MC是⊙O的切线;
(2)若AB=BM=4,求tan∠MAC的值.
18.(2022•玉林)如图,AB是⊙O的直径,C,D都是⊙O上的点,AD平分∠CAB,过点D作AC的垂线交AC的延长线于点E,交AB的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)若AB=10,AC=6,求tan∠DAB的值.
八.圆的综合题(共5小题)
19.(2022•梧州)如图,以AB为直径的半圆中,点O为圆心,点C在圆上,过点C作CD∥AB,且CD=OB.连接AD,分别交OC,BC于点E,F,与⊙O交于点G,若∠ABC=45°.
(1)求证:①△ABF∽△DCF;
②CD是⊙O的切线.
(2)求的值.
20.(2022•广西)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.
(1)求证:DE是⊙O的切线;
(2)若=,AF=10,求⊙O的半径.
21.(2022•贺州)如图,△ABC内接于⊙O,AB是直径,延长AB到点E,使得BE=BC=6,连接EC,且∠ECB=∠CAB,点D是上的点,连接AD,CD,且CD交AB于点F.
(1)求证:EC是⊙O的切线;
(2)若BC平分∠ECD,求AD的长.
22.(2022•桂林)如图,AB是⊙O的直径,点C是圆上的一点,CD⊥AD于点D,AD交⊙O于点F,连接AC,若AC平分∠DAB,过点F作FG⊥AB于点G交AC于点H.
(1)求证:CD是⊙O的切线;
(2)延长AB和DC交于点E,若AE=4BE,求cos∠DAB的值;
(3)在(2)的条件下,求的值.
23.(2022•河池)如图,AB是⊙O的直径,E为⊙O上的一点,∠ABE的平分线交⊙O于点C,过点C的直线交BA的延长线于点P,交BE的延长线于点D.且∠PCA=∠CBD.
(1)求证:PC为⊙O的切线;
(2)若PC=2BO,PB=12,求⊙O的半径及BE的长.
九.作图-轴对称变换(共1小题)
24.(2022•桂林)如图,在平面直角坐标系中,形如英文字母“V”的图形三个端点的坐标分别是A(2,3),B(1,0),C(0,3).
(1)画出“V”字图形向左平移2个单位后的图形;
(2)画出原“V”字图形关于x轴对称的图形;
(3)所得图形与原图形结合起来,你能从中看出什么英文字母?(任意答一个即可)
一十.相似三角形的判定与性质(共2小题)
25.(2022•贵港)如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O经过点C且与AB边相切于点E,∠FAC=∠BDC.
(1)求证:AF是⊙O的切线;
(2)若BC=6,sinB=,求⊙O的半径及OD的长.
26.(2022•玉林)如图,在矩形ABCD中,AB=8,AD=4,点E是DC边上的任一点(不包括端点D,C),过点A作AF⊥AE交CB的延长线于点F,设DE=a.
(1)求BF的长(用含a的代数式表示);
(2)连接EF交AB于点G,连接GC,当GC∥AE时,求证:四边形AGCE是菱形.
一十一.解直角三角形(共1小题)
27.(2022•贺州)如图,在平行四边形ABCD中,点E,F分别在AD,BC上,且ED=BF,连接AF,CE,AC,EF,且AC与EF相交于点O.
(1)求证:四边形AFCE是平行四边形;
(2)若AC平分∠FAE,AC=8,tan∠DAC=,求四边形AFCE的面积.
一十二.解直角三角形的应用(共1小题)
28.(2022•梧州)今年,我国“巅峰使命”2022珠峰科考团对珠穆朗玛峰进行综合科学考察,搭建了世界最高海拔的自动气象站,还通过释放气球方式进行了高空探测.某学校兴趣小组开展实践活动,通过观测数据,计算气球升空的高度AB.
如图,在平面内,点B,C,D在同一直线上,AB⊥CB,垂足为点B,∠ACB=52°,∠ADB=60°,CD=200m,求AB的高度.(精确到1m)
(参考数据:sin52°≈0.79,cos52°≈0.62,tan52°≈1.28,≈1.73)
一十三.解直角三角形的应用-仰角俯角问题(共1小题)
29.(2022•贺州)如图,在小明家附近有一座废旧的烟囱,为了乡村振兴,美化环境,政府计划把这片区域改造为公园.现决定用爆破的方式拆除该烟囱,为确定安全范围,需测量烟囱的高度AB,因为不能直接到达烟囱底部B处,测量人员用高为1.2m的测角器在与烟囱底部B成一直线的C,D两处地面上,分别测得烟囱顶部A的仰角∠B′C′A=60°,∠B′D′A=30°,同时量得CD为60m.问烟囱AB的高度为多少米?(精确到0.1m,参考数据:≈1.414,≈1.732)
一十四.条形统计图(共1小题)
30.(2022•桂林)某校将举办的“壮乡三月三”民族运动会中共有四个项目:A跳长绳,B抛绣球,C拔河,D跳竹竿舞.该校学生会围绕“你最喜欢的项目是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表:
项目
内容
百分比
A
跳长绳
25%
B
抛绣球
35%
C
拔河
30%
D
跳竹竿舞
a
请结合统计图表,回答下列问题:
(1)填空:a= ;
(2)本次调查的学生总人数是多少?
(3)请将条形统计图补充完整;
(4)李红同学准备从抛绣球和跳竹竿舞两个项目中选择一项参加,但她拿不定主意,请你结合调查统计结果给她一些合理化建议进行选择.
一十五.列表法与树状图法(共3小题)
31.(2022•河池)为喜迎中国共产党第二十次全国代表大会的召开,红星中学举行党史知识竞赛.团委随机抽取了部分学生的成绩作为样本,把成绩按达标,良好,优秀,优异四个等级分别进行统计,并将所得数据绘制成如下不完整的统计图.
请根据图中提供的信息,解答下列问题:
(1)本次调查的样本容量是 ,圆心角β= 度;
(2)补全条形统计图;
(3)已知红星中学共有1200名学生,估计此次竞赛该校获优异等级的学生人数为多少?
(4)若在这次竞赛中有A,B,C,D四人成绩均为满分,现从中抽取2人代表学校参加县级比赛.请用列表或画树状图的方法求出恰好抽到A,C两人同时参赛的概率.
32.(2022•百色)学校举行“爱我中华,朗诵经典”班级朗诵比赛,黄老师收集了所有参赛班级的成绩后,把成绩x(满分100分)分成四个等级(A:90≤x≤100,B:80≤x<90,C:70≤x<80,D:60≤x<70)进行统计,并绘制成如下不完整的条形统计图和扇形统计图.
根据信息作答:
(1)参赛班级总数有 个;m= ;
(2)补全条形统计图;
(3)统计发现D等级中七年级、八年级各有两个班,为了提高D等级班级的朗诵水平,语文组老师计划从D等级班级中任选两个班进行首轮培训,求选中两个班恰好是同一个年级的概率(用画树状图或列表法把所有可能结果表示出来).
33.(2022•梧州)某校团委为了解学生关注“2022年北京冬奥会”情况,以随机抽样的方式对学生进行问卷调查,学生只选择一个运动项目作为最关注项目,把调查结果分为“滑雪”“滑冰”“冰球”“冰壶”“其他”五类,绘制成统计图①和图②.
(1)本次抽样调查的学生共 人;
(2)将图①补充完整;
(3)在这次抽样的学生中,挑选了甲,乙,丙,丁四名学生进行相关培训,最后从这四名学生中随机抽取2名进行“爱我北京冬奥”主题演讲.请用画树状图法或列表法求出抽中两名学生分别是甲和乙的概率.
参考答案与试题解析
一.一次函数的应用(共1小题)
1.(2022•梧州)梧州市地处亚热带,盛产龙眼.新鲜龙眼的保质期短,若加工成龙眼干(又叫带壳圆肉)则有利于较长时间保存.已知3kg的新鲜龙眼在无损耗的情况下可以加工成1kg的龙眼干.
(1)若新鲜龙眼售价为12元/kg.在无损耗的情况下加工成龙眼干,使龙眼干的销售收益不低于新鲜龙眼的销售收益,则龙眼干的售价应不低于多少元/kg?
(2)在实践中,小苏发现当地在加工龙眼干的过程中新鲜龙眼有6%的损耗,为确保果农的利益,龙眼干的销售收益应不低于新鲜龙眼的销售收益,此时龙眼干的定价取最低整数价格.
市场调查还发现,新鲜龙眼以12元/kg最多能卖出100kg,超出部分平均售价是5元/kg,可售完.果农们都以这种方式出售新鲜龙眼.
设某果农有akg新鲜龙眼,他全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差为w元,请写出w与a的函数关系式.
【解答】解:(1)设龙眼干的售价为x元/kg,新鲜龙眼共3a千克,
总销售收益为12×3a=36a(元),
加工成龙眼干后共a千克,
总销售收益为x×a=ax(元),
∵龙眼干的销售收益不低于新鲜龙眼的销售收益,
∴ax≥36a,
解出:x≥36,
故龙眼干的售价应不低于36元/kg;
(2)a千克的新鲜龙眼一共可以加工成(1﹣6%)a=a 千克龙眼干,
设龙眼干的售价为y元/千克,则龙眼干的总销售收益为ay元,
当a≤100千克时,新鲜龙眼的总收益为12a元,
∵龙眼干的销售收益不低于新鲜龙眼的销售收益,
∴≥12a,
解得:y≥,
∵y为整数,
∴y最小为39,
∴龙眼干的销售总收益为a=a(元),
此时全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差w=a﹣12a=;
当a>100千克时,新鲜龙眼的总收益为12×100+5(a﹣100)=(5a+700)元,龙眼干的总销售收益为a元,
此时全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差w=a﹣(5a+700)=(a﹣700)元,
综上,w与a的函数关系式为w=.
二.二次函数的应用(共2小题)
2.(2022•广西)打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.
(1)求y与x的函数解析式,并写出自变量x的取值范围;
(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.
【解答】解:(1)设函数解析式为y=kx+b,由题意得:
,
解得:,
∴y=﹣5x+500,
当y=0时,﹣5x+500=0,
∴x=100,
∴y与x之间的函数关系式为y=﹣5x+500(50<x<100的小数位数只有一位且小数部分为偶数的数);
(2)设销售利润为w元,
w=(x﹣50)(﹣5x+500)=﹣5x2+750x﹣25000=﹣5(x﹣75)2+3125,
∵抛物线开口向下,
∴50<x<100,
∴当x=75时,w有最大值,是3125,
∴当销售单价定为75元时,该种油茶的月销售利润最大,最大利润是3125元.
3.(2022•贺州)2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品.某商家以每套34元的价格购进一批冰墩墩和雪容融套件.若该产品每套的售价是48元时,每天可售出200套;若每套售价提高2元,则每天少卖4套.
(1)设冰墩墩和雪容融套件每套售价定为x元时,求该商品销售量y与x之间的函数关系式;
(2)求每套售价定为多少元时,每天销售套件所获利润W最大,最大利润是多少元?
【解答】解:(1)根据题意,得y=200﹣×4(x﹣48)
=﹣2x+296,
∴y与x之间的函数关系式:y=﹣2x+296;
(2)根据题意,得W=(x﹣34)(﹣2x+296)
=﹣2(x﹣91)2+6498,
∵a=﹣2<0,
∴抛物线开口向下,W有最大值,
当x=91时,W最大值=6498,
答:每套售价定为:91元时,每天销售套件所获利润最大,最大利润是6498元.
三.二次函数综合题(共8小题)
4.(2022•贵港)如图,已知抛物线y=﹣x2+bx+c经过A(0,3)和B(,﹣)两点,直线AB与x轴相交于点C,P是直线AB上方的抛物线上的一个动点,PD⊥x轴交AB于点D.
(1)求该抛物线的表达式;
(2)若PE∥x轴交AB于点E,求PD+PE的最大值;
(3)若以A,P,D为顶点的三角形与△AOC相似,请直接写出所有满足条件的点P,点D的坐标.
【解答】解:(1)将A(0,3)和B(,﹣)代入y=﹣x2+bx+c,
,
解得,
∴该抛物线的解析式为y=﹣x2+2x+3;
(2)设直线AB的解析式为y=kx+n,把A(0,3)和B(,﹣)代入,
,
解得,
∴直线AB的解析式为y=﹣x+3,
当y=0时,﹣x+3=0,
解得:x=2,
∴C点坐标为(2,0),
∵PD⊥x轴,PE∥x轴,
∴∠ACO=∠DEP,
∴Rt△DPE∽Rt△AOC,
∴,
∴PE=PD,
∴PD+PE=PD,
设点P的坐标为(a,﹣a2+2a+3),则D点坐标为(a,﹣a+3),
∴PD=(﹣a2+2a+3)﹣(﹣a+3)=﹣(a﹣)2+,
∴PD+PE=﹣(a﹣)2+,
∵﹣<0,
∴当a=时,PD+PE有最大值为;
(3)①当△AOC∽△APD时,
∵PD⊥x轴,∠DPA=90°,
∴点P纵坐标是3,横坐标x>0,
即﹣x2+2x+3=3,解得x=2,
∴点D的坐标为(2,0);
∵PD⊥x轴,
∴点P的横坐标为2,
∴点P的纵坐标为:y=﹣22+2×2+3=3,
∴点P的坐标为(2,3),点D的坐标为(2,0);
②当△AOC∽△DAP时,
此时∠APG=∠ACO,
过点A作AG⊥PD于点G,
∴△APG∽△ACO,
∴,
设点P的坐标为(m,﹣m2+2m+3),则D点坐标为(m,﹣m+3),
则,
解得:m=,
∴D点坐标为(,1),P点坐标为(,),
综上,点P的坐标为(2,3),点D的坐标为(2,0)或P点坐标为(,),D点坐标为(,1).
5.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.
(1)求抛物线的表达式;
(2)求证:∠BOF=∠BDF;
(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.
【解答】(1)解:设抛物线的表达式为y=ax2+bx+c,
把A(﹣1,0)、B(0,3)、C(3,0)代入
得:,解得,
∴抛物线的表达式为:y=﹣x2+2x+3;
(2)证明:∵正方形OBDC,
∴∠OBC=∠DBC,BD=OB,
∵BF=BF,
∴△BOF≌△BDF,
∴∠BOF=∠BDF;
(3)解:∵抛物线交正方形OBDC的边BD于点E,
∴令y=3,则3=﹣x2+2x+3,解得:x1=0,x2=2,
∴E(2,3),
①如图,
当M在线段BD的延长线上时,∠BDF为锐角,
∴∠FDM为钝角,
∵△MDF为等腰三角形,
∴DF=DM,
∴∠M=∠DFM,
∴∠BDF=∠M+∠DFM=2∠M,
∵BM∥OC,
∴∠M=∠MOC,
由(2)得∠BOF=∠BDF,
∴∠BDF+∠MOC=3∠M=90°,
∴∠M=30°,
在Rt△BOM中,
BM=,
∴ME=BM﹣BE=3﹣2;
②如图,
当M在线段BD上时,∠DMF为钝角,
∵△MDF为等腰三角形,
∴MF=DM,
∴∠BDF=∠MFD,
∴∠BMO=∠BDF+∠MFD=2∠BDF,
由(2)得∠BOF=∠BDF,
∴∠BMO=2∠BOM,
∴∠BOM+∠BMO=3∠BOM=90°,
∴∠BOM=30°,
在Rt△BOM中,
BM=,
∴ME=BE﹣BM=2﹣,
综上所述,ME的值为:3﹣2或2﹣.
6.(2022•梧州)如图,在平面直角坐标系中,直线y=﹣x﹣4分别与x,y轴交于点A,B,抛物线y=x2+bx+c恰好经过这两点.
(1)求此抛物线的解析式;
(2)若点C的坐标是(0,6),将△ACO绕着点C逆时针旋转90°得到△ECF,点A的对应点是点E.
①写出点E的坐标,并判断点E是否在此抛物线上;
②若点P是y轴上的任一点,求BP+EP取最小值时,点P的坐标.
【解答】解:(1)∵直线y=﹣x﹣4分别与x,y轴交于点A,B,
∴当x=0时,y=﹣4;当y=0时,x=﹣3,
∴A(﹣3,0),B(0,﹣4),
∵抛物线y=x2+bx+c恰好经过这两点.
∴,
解得,
∴y=﹣x﹣4;
(2)①∵将△ACO绕着点C逆时针旋转90°得到△ECF,
∴∠OCF=90°,CF=CO=6,EF=AO=3,EF∥y轴,
∴E(6,3),
当x=6时,y==3,
∴点E在抛物线上;
②过点E作EH⊥AB,交y轴于P,垂足为H,
∵A(﹣3,0),B(0,﹣4),
∴OA=3,OB=4,
∴AB=5,
∵sin∠ABO=,
∴HP=BP,
∴BP+EP=HP+PE,
∴HP+PE的最小值为EH的长,
作EG⊥y轴于G,
∵∠GEP=∠ABO,
∴tan∠GEP=tan∠ABO,
∴,
∴,
∴PG=,
∴OP=﹣3=,
∴P(0,﹣).
7.(2022•桂林)如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B的左侧),与y轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ(点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.
(1)直接写出A,B,C三点的坐标;
(2)求CP+PQ+QB的最小值;
(3)过点P作PM⊥y轴于点M,当△CPM和△QBN相似时,求点Q的坐标.
【解答】解:(1)在y=﹣x2+3x+4中,令x=0得y=4,令y=0得x=﹣1或x=4,
∴A(﹣1,0),B(4,0),C(0,4);
(2)将C(0,4)向下平移至C',使CC'=PQ,连接BC'交抛物线的对称轴l于Q,如图:
∵CC'=PQ,CC'∥PQ,
∴四边形CC'QP是平行四边形,
∴CP=C'Q,
∴CP+PQ+BQ=C'Q+PQ+BQ=BC'+PQ,
∵B,Q,C'共线,
∴此时CP+PQ+BQ最小,最小值为BC'+PQ的值,
∵C(0,4),CC'=PQ=1,
∴C'(0,3),
∵B(4,0),
∴BC'==5,
∴BC'+PQ=5+1=6,
∴CP+PQ+BQ最小值为6;
(3)如图:
由在y=﹣x2+3x+4得抛物线对称轴为直线x=﹣=,
设Q(,t),则Q(,t+1),M(0,t+1),N(,0),
∵B(4,0),C(0,4);
∴BN=,QN=t,PM=,CM=|t﹣3|,
∵∠CMP=∠QNB=90°,
∴△CPM和△QBN相似,只需=或=,
①当=时,=,
解得t=或t=,
∴Q(,)或(,);
②当=时,=,
解得t=或t=(舍去),
∴Q(,),
综上所述,Q的坐标是(,)或(,)或(,).
8.(2022•河池)在平面直角坐标系中,抛物线L1:y=ax2+2x+b与x轴交于两点A,B(3,0),与y轴交于点C(0,3).
(1)求抛物线L1的函数解析式,并直接写出顶点D的坐标;
(2)如图,连接BD,若点E在线段BD上运动(不与B,D重合),过点E作EF⊥x轴于点F,设EF=m,问:当m为何值时,△BFE与△DEC的面积之和最小;
(3)若将抛物线L1绕点B旋转180°得抛物线L2,其中C,D两点的对称点分别记作M,N.问:在抛物线L2的对称轴上是否存在点P,使得以B,M,P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
【解答】解:(1)∵y=ax2+2x+b经过B(3,0),C(0,3),
∴,
∴,
∴抛物线的解析式为y=﹣x2+2x+3,
∵y=﹣(x﹣1)2+4,
∴抛物线的顶点D(1,4);
(2)如图1中,连接BC,过点C作CH⊥BD于点H.设抛物线的对称轴交x轴于点T.
∵C(0,3),B(3,0),D(1,4),
∴BC=3,CD=,BD==2,
∴BC2+CD2=BD2,
∴∠BCD=90°,
∵•CD•CB=•BD•CH,
∴CH==,
∵EF⊥x轴,DT⊥x轴,
∴EF∥DT,
∴==,
∴==,
∴BE=m,BF=m,
∴△BFE与△DEC的面积之和S=×(2﹣m)×+×m×m=(m﹣)2+,
∵>0,
∴S有最小值,最小值为,此时m=,
∴m=时,△BFE与△DEC的面积之和有最小值.
(3)存在.
理由:如图2中,由题意抛物线L2的对称轴x=5,M(6,﹣3).
设P(5,m),
当BP=BM=3时,22+m2=(3)2,
∴m=±,
∴P1(5,),P2(5,﹣),
当PB=PM时,22+m2=12+(m+3)2,
解得,m=﹣1,
∴P3(5,﹣1),
当BM=PM时,(3)2=12+(m+3)2,
解得,m=﹣3±,
∴P4(5,﹣3+),P5(5,﹣3﹣),
综上所述,满足条件的点P的坐标为P1(5,),P2(5,﹣),P3(5,﹣1),P4(5,﹣3+),P5(5,﹣3﹣).
9.(2022•广西)已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧).
(1)求点A,点B的坐标;
(2)如图,过点A的直线l:y=﹣x﹣1与抛物线的另一个交点为C,点P为抛物线对称轴上的一点,连接PA,PC,设点P的纵坐标为m,当PA=PC时,求m的值;
(3)将线段AB先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN,若抛物线y=a(﹣x2+2x+3)(a≠0)与线段MN只有一个交点,请直接写出a的取值范围.
【解答】解:(1)当y=0时,﹣x2+2x+3=0,
∴x1=﹣1,x2=3,
∴A (﹣1,0),B(3,0);
(2)∵抛物线对称轴为:x==1,
∴设P(1,m),
由﹣x2+2x+3=﹣x﹣1得,
x3=﹣1(舍去),x4=4,
当x=4时,y=﹣4﹣1=﹣5,
∴C(4,﹣5),
由PA2=PC2得,
22+m2=(4﹣1)2+(m+5)2,
∴m=﹣3;
(3)可得M(0,5),N(4,5),
当a>0时,
∵y=﹣a(x﹣1)2+4a,
∴抛物线的顶点为:(1,4a),
当4a=5时,只有一个公共点,
∴a=,
当x=0时,y>5,
∴3a>5,
∴a>,
∴a>或a=,
当a<0时,
(﹣16+8+3)a≥5,
∴a≤﹣1,
综上所述:a>或a=或a≤﹣1.
10.(2022•贺州)如图,抛物线y=﹣x2+bx+c过点A(﹣1,0),B(3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)点P为抛物线对称轴上一动点,当△PCB是以BC为底边的等腰三角形时,求点P的坐标;
(3)在(2)条件下,是否存在点M为抛物线第一象限上的点,使得S△BCM=S△BCP?若存在,求出点M的横坐标;若不存在,请说明理由.
【解答】解:(1)由题意得:y=﹣(x+1)•(x﹣3),
∴y=﹣x2+2x+3;
(2)设P(1,m),
∵PB2=PC2,
∴(3﹣1)2+m2=1+(m﹣3)2,
∴m=1,
∴P(1,1);
(3)假设存在M点满足条件,
作PQ∥BC交y轴于Q,作MN∥BC交y轴于N,
∵PQ的解析式为y=﹣x+2,
∴Q(0,2),
∵C(0,3),S△BCM=S△BCP,
∴N(0,4),
∴直线MN的解析式为:y=﹣x+4,
由﹣x2+2x+3=﹣x+4得,
x=,
∴M点横坐标为或.
11.(2022•玉林)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.
(1)求抛物线的解析式;
(2)若点D为线段OC的中点,则△POD能否是等边三角形?请说明理由;
(3)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.
【解答】解:(1)由题意得:,
解得:,
∴抛物线的解析式为:y=﹣2x2+2x+4;
(2)△POD不可能是等边三角形,理由如下:
如图1,取OD的中点E,过点E作EP∥x轴,交抛物线于点P,连接PD,PO,
∵C(0,4),D是OD的中点,
∴E(0,1),
当y=1时,﹣2x2+2x+4=1,
2x2﹣2x﹣3=0,
解得:x1=,x2=(舍),
∴P(,1),
∴OD≠PD,
∴△POD不可能是等边三角形;
(3)设点P的坐标为(t,﹣2t2+2t+4),则OH=t,BH=2﹣t,
分两种情况:
①如图2,△CMP∽△BMH,
∴∠PCM=∠OBC,∠BHM=∠CPM=90°,
∴tan∠OBC=tan∠PCM,
∴====2,
∴PM=2PC=2t,MH=2BH=2(2﹣t),
∵PH=PM+MH,
∴2t+2(2﹣t)=﹣2t2+2t+4,
解得:t1=0,t2=1,
∴P(1,4);
②如图3,△PCM∽△BHM,则∠PCM=∠BHM=90°,
过点P作PE⊥y轴于E,
∴∠PEC=∠BOC=∠PCM=90°,
∴∠PCE+∠EPC=∠PCE+∠BCO=90°,
∴∠BCO=∠EPC,
∴△PEC∽△COB,
∴=,
∴=,
解得:t1=0(舍),t2=,
∴P(,);
综上,点P的坐标为(1,4)或(,).
四.三角形综合题(共2小题)
12.(2022•贵港)已知:点C,D均在直线l的上方,AC与BD都是直线l的垂线段,且BD在AC的右侧,BD=2AC,AD与BC相交于点O.
(1)如图1,若连接CD,则△BCD的形状为 等腰三角形 ,的值为 ;
(2)若将BD沿直线l平移,并以AD为一边在直线l的上方作等边△ADE.
①如图2,当AE与AC重合时,连接OE,若AC=,求OE的长;
②如图3,当∠ACB=60°时,连接EC并延长交直线l于点F,连接OF.求证:OF⊥AB.
【解答】解:(1)如图1,过点C作CH⊥BD于H,
∵AC⊥l,DB⊥l,CH⊥BD,
∴∠CAB=∠ABD=∠CHB=90°,
∴四边形ABHC是矩形,
∴AC=BH,
又∵BD=2AC,
∴AC=BH=DH,且CH⊥BD,
∴△BCD的形状为等腰三角形,
∵AC、BD都垂直于l,
∴△AOC∽△BOD,
∴,即DO=2AO,
∴,
故答案为:等腰三角形,;
(2)①如图2,过点E作EH⊥AD于点H,
∵AC,BD均是直线l的垂线段,
∴AC∥BD,
∵△ADE是等边三角形,且AE与AC重合,
∴∠EAD=60°,
∴∠ADB=∠EAD=60°,
∴∠BAD=30°,
∴在Rt△ADB中,AD=2BD,AB=BD,
又∵BD=2AC,AC=,
∴AD=6,AB=3,
∴AH=DH=AD=3,AO=AD=2,
∴OH=1,
由旋转性质可得EH=AB=3,
在Rt△EOH中,OE=2;
②如图3,连接CD,
∵AC∥BD,
∴∠CBD=∠ACB=60°,
∵△BCD是等腰三角形,
∴△BCD是等边三角形,
又∵△ADE是等边三角形,
∴△ABD绕点D顺时针旋转60°后与△ECD重合,
∴∠ECD=∠ABD=90°,
又∵∠BCD=∠ACB=60°,
∴∠ACF=∠FCB=∠FBC=30°,
∴FC=FB=2AF,
∴,
又∵∠OAF=∠DAB,
∴△AOF∽△ADB,
∴∠AFO=∠ABD=90°,
∴OF⊥AB.
13.(2022•广西)已知∠MON=α,点A,B分别在射线OM,ON上运动,AB=6.
(1)如图①,若α=90°,取AB中点D,点A,B运动时,点D也随之运动,点A,B,D的对应点分别为A′,B′,D′,连接OD,OD′.判断OD与OD′有什么数量关系?证明你的结论;
(2)如图②,若α=60°,以AB为斜边在其右侧作等腰直角三角形ABC,求点O与点C的最大距离;
(3)如图③,若α=45°,当点A,B运动到什么位置时,△AOB的面积最大?请说明理由,并求出△AOB面积的最大值.
【解答】解:(1)OD=OD′,理由如下:
在Rt△AOB中,点D是AB的中点,
∴OD=,
同理可得:OD′=,
∵AB=A′B′,
∴OD=OD′;
(2)如图1,
作△AOB的外接圆I,连接CI并延长,分别交⊙I于O′和D,
当O运动到O′时,OC最大,
此时△AOB是等边三角形,
∴BO′=AB=6,
OC最大=CO′=CD+DO′=+BO′=3+3;
(3)如图2,
作等腰直角三角形AIB,以I为圆心,AI为半径作⊙I,
∴AI==3,∠AOB=,
则点O在⊙I上,取AB的中点C,连接CI并延长交⊙I于O,
此时△AOB的面积最大,
∵OC=CI+OI=AB+3=3+3,
∴S△AOB最大==9+9.
五.平行四边形的性质(共2小题)
14.(2022•广西)如图,在▱ABCD中,BD是它的一条对角线.
(1)求证:△ABD≌△CDB;
(2)尺规作图:作BD的垂直平分线EF,分别交AD,BC于点E,F(不写作法,保留作图痕迹);
(3)连接BE,若∠DBE=25°,求∠AEB的度数.
【解答】(1)证明:如图1,
∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,
∵BD=BD,
∴△ABD≌△CDB(SSS);
(2)如图所示,
(3)解:如图3,
∵EF垂直平分BD,∠DBE=25°,
∴EB=ED,
∴∠DBE=∠BDE=25°,
∵∠AEB是△BED的外角,
∴∠AEB=∠DBE+∠BDE=25°+25°=50°.
15.(2022•桂林)如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF=DE.
(1)求证:BE=DF;
(2)求证:△ABE≌△CDF.
【解答】证明:(1)∵BF=DE,BF﹣EF=DE﹣EF,
∴BE=DF;
(2)∵四边形ABCD为平行四边形,
∴AB=CD,且AB∥CD,
∴∠ABE=∠CDF,
在△ABE和△CDF中,
.
∴△ABE≌△CDF(SAS).
六.平行四边形的判定(共1小题)
16.(2022•河池)如图,点A,F,C,D在同一直线上,AB=DE,AF=CD,BC=EF.
(1)求证:∠ACB=∠DFE;
(2)连接BF,CE,直接判断四边形BFEC的形状.
【解答】(1)证明:∵AF=CD,
∴AF+CF=CD+CF,
即AC=DF,
在△ABC和△DEF中,
,
∴△ABC≌△DEF(SSS),
∴∠ACB=∠DFE;
(2)解:如图,四边形BFEC是平行四边形,理由如下:
由(1)可知,∠ACB=∠DFE,
∴BC∥EF,
又∵BC=EF,
∴四边形BFEC是平行四边形.
七.切线的判定与性质(共2小题)
17.(2022•百色)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点M,作AD⊥MC,垂足为D,已知AC平分∠MAD.
(1)求证:MC是⊙O的切线;
(2)若AB=BM=4,求tan∠MAC的值.
【解答】(1)证明:∵AD⊥MC,
∴∠D=90°,
∵OA=OC,
∴∠OCA=∠OAC,
∵AC平分∠MAD,
∴∠DAC=∠OAC,
∴∠OCA=∠DAC,
∴OC∥DA,
∴∠D=∠OCM=90°,
∵OC是⊙O的半径,
∴MC是⊙O的切线;
(2)解:∵AB=4,
∴OC=OB=AB=2,
∴OM=OB+BM=6,
在Rt△OCM中,MC===4,
∵∠M=∠M,∠OCM=∠D=90°,
∴△MCO∽△MDA,
∴==,
∴==,
∴MD=,AD=,
∴CD=MD﹣MC=,
在Rt△ACD中,tan∠DAC===,
∴tan∠MAC=tan∠DAC=,
∴tan∠MAC的值为.
18.(2022•玉林)如图,AB是⊙O的直径,C,D都是⊙O上的点,AD平分∠CAB,过点D作AC的垂线交AC的延长线于点E,交AB的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)若AB=10,AC=6,求tan∠DAB的值.
【解答】(1)证明:如图1,连接OD,
∵AD平分∠CAB,
∴∠OAD=∠EAD.
∵OD=OA,
∴∠ODA=∠OAD.
∴∠ODA=∠EAD.
∴OD∥AE.
∵∠ODF=∠AEF=90°且D在⊙O上,
∴EF是⊙O的切线;
(2)连接BC,交OD于H,
∵AB是⊙O的直径,
∴∠ACB=90°,
∵AB=10,AC=6,
∴BC===8,
∵∠E=∠ACB=90°,
∴BC∥EF,
∴∠OHB=∠ODF=90°,
∴OD⊥BC,
∴CH=BC=4,
∵CH=BH,OA=OB,
∴OH=AC=3,
∴DH=5﹣3=2,
∵∠E=∠HCE=∠EDH=90°,
∴四边形ECHD是矩形,
∴ED=CH=4,CE=DH=2,
∴AE=6+2=8,
∵∠DAB=∠DAE,
∴tan∠DAB=tan∠DAE===.
八.圆的综合题(共5小题)
19.(2022•梧州)如图,以AB为直径的半圆中,点O为圆心,点C在圆上,过点C作CD∥AB,且CD=OB.连接AD,分别交OC,BC于点E,F,与⊙O交于点G,若∠ABC=45°.
(1)求证:①△ABF∽△DCF;
②CD是⊙O的切线.
(2)求的值.
【解答】(1)证明:①∵CD∥AB,
∴∠FAB=∠D,
∵∠AFB=∠DFC,
∴△ABF∽△DCF;
②∵∠ABC=45°,
∴∠AOC=2∠ABC=90°,
∵CD∥AB,
∴∠DCO=∠AOC=90°,
∵OC是半圆的半径,
∴CD是⊙O的切线;
(2)解:过点F作FH∥AB交OC于H,
设圆的半径为2a,
∵CD=OB=OA,CD∥AB,
∴CE=OE=a,AE=DE,
由勾股定理得:AE==a,
∴AD=2a,
∵△ABF∽△DCF,
∴==,
∵FH∥AB,
∴==,
∵FH∥AB,
∴==,
∴EF=,
∵CD是⊙O的切线,
∴DC2=DG•DA,即(2a)2=DG•2a,
解得:DG=,
∴FG=a﹣﹣=,
∴==.
20.(2022•广西)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.
(1)求证:DE是⊙O的切线;
(2)若=,AF=10,求⊙O的半径.
【解答】(1)证明:如图1,
连接OD,则OD=OC,
∴∠ODC=∠OCD,
∵AB=AC,
∴∠B=∠OCD,
∴∠B=∠ODC,
∴OD∥AB,
∵DE⊥AB,
∴OD⊥DE,
∵OD为⊙O的半径,
∴DE是⊙O的切线;
(2)解:如图2,连接AD,
∵=,
∴设AE=2m,DE=3m,
∵DE⊥AB,
∴∠AED=∠BED=90°,
在Rt△ADE中,根据勾股定理得,AD==m,
∵AC为直径,
∴∠ADB=∠ADC=90°=∠AED,
∴∠A=∠A,
∴△ABD∽△ADE,
∴=,
∴,
∴AB=m,BD=m,
∵AB=AC,∠ADC=90°,
∴DC=m,BC=2BD=3m,
连接AF,则∠ADB=∠F,
∵∠B=∠B,
∴△ADB∽△CFB,
∴,
∵AF=10,
∴BF=AB+AF=m+10,
∴,
∴m=4,
∴AD=4,CD=6,
在Rt△ADC中,根据勾股定理得,AC==26,
∴⊙O的半径为AC=13.
21.(2022•贺州)如图,△ABC内接于⊙O,AB是直径,延长AB到点E,使得BE=BC=6,连接EC,且∠ECB=∠CAB,点D是上的点,连接AD,CD,且CD交AB于点F.
(1)求证:EC是⊙O的切线;
(2)若BC平分∠ECD,求AD的长.
【解答】(1)证明:连接OC,
∵OA=OC,
∴∠CAB=∠ACO,
∵∠ECB=∠CAB,
∴∠ECB=∠ACO,
∵AB是直径,
∴∠ACB=90°,
∵∠ACO+∠OCB=90°,
∴∠ECB+∠OCB=90°,即OC⊥EC,
∵OC是⊙O的半径,
∴EC是⊙O的切线;
(2)解:∵BC平分∠ECD,
∴∠BCD=∠ECB,
∵∠BCD=∠BAD,
∴∠ECB=∠BAD,
∵∠ECB=∠CAB,
∴∠BAD=∠CAB,
∵AB是直径,
∴AB⊥DC,
在Rt△FCE中,
∵BE=BC,
∴∠E=∠ECB,
∴∠E=∠ECB=∠BCF=30°,
在Rt△BCF中,BC=6,∠BCF=30°,
∴CF=BC•cos∠BCF=6×=3,
∵AB⊥CD,AB是直径,
∴DF=CF=3,
∵∠DAF=∠BCF=30°,
∴AD==.
22.(2022•桂林)如图,AB是⊙O的直径,点C是圆上的一点,CD⊥AD于点D,AD交⊙O于点F,连接AC,若AC平分∠DAB,过点F作FG⊥AB于点G交AC于点H.
(1)求证:CD是⊙O的切线;
(2)延长AB和DC交于点E,若AE=4BE,求cos∠DAB的值;
(3)在(2)的条件下,求的值.
【解答】(1)证明:如图1,连接OC,
∵OA=OC,
∴∠CAO=∠ACO,
∵AC平分∠DAB,
∴∠DAC=∠OAC,
∴∠DAC=∠ACO,
∴AD∥OC,
∵CD⊥AD,
∴OC⊥CD,
∵OC是⊙O的半径,
∴CD是⊙O的切线;
(2)解:∵AE=4BE,OA=OB,
设BE=x,则AB=3x,
∴OC=OB=1.5x,
∵AD∥OC,
∴∠COE=∠DAB,
∴cos∠DAB=cos∠COE===;
(3)解:由(2)知:OE=2.5x,OC=1.5x,
∴EC===2x,
∵FG⊥AB,
∴∠AGF=90°,
∴∠AFG+∠FAG=90°,
∵∠COE+∠E=90°,∠COE=∠DAB,
∴∠E=∠AFH,
∵∠FAH=∠CAE,
∴△AHF∽△ACE,
∴===.
23.(2022•河池)如图,AB是⊙O的直径,E为⊙O上的一点,∠ABE的平分线交⊙O于点C,过点C的直线交BA的延长线于点P,交BE的延长线于点D.且∠PCA=∠CBD.
(1)求证:PC为⊙O的切线;
(2)若PC=2BO,PB=12,求⊙O的半径及BE的长.
【解答】(1)证明:连接OC,
∵BC平分∠ABE,
∴∠ABC=∠CBD,
∵OC=OB,
∴∠ABC=∠OCB,
∵∠PCA=∠CBD,
∴∠PCA=∠OCB,
∵AB是直径,
∴∠ACB=90°,
∴∠ACO+∠OCB=90°,
∴∠PCA+∠ACO=90°,
∴∠PCO=90°,
∴OC⊥PC,
∵OC是半径,
∴PC是⊙O的切线;
(2)解:连接AE,设OB=OC=r,
∵PC=2OB,
∴PC=2r,
∴OP===3r,
∵PB=12,
∴4r=12,
∴r=3,
由(1)可知,∠OCB=∠CBD,
∴OC∥BD,
∴=,∠D=∠PCO=90°,
∴=,
∴BD=4,
∵AB是直径,
∴∠AEB=90°,
∴∠AEB=∠D=90°,
∴AE∥PD,
∴=,
∴=,
∴BE=2.
九.作图-轴对称变换(共1小题)
24.(2022•桂林)如图,在平面直角坐标系中,形如英文字母“V”的图形三个端点的坐标分别是A(2,3),B(1,0),C(0,3).
(1)画出“V”字图形向左平移2个单位后的图形;
(2)画出原“V”字图形关于x轴对称的图形;
(3)所得图形与原图形结合起来,你能从中看出什么英文字母?(任意答一个即可)
【解答】解:(1)如图1,
(2)如图2,
(3)图1是W,图2是X.
一十.相似三角形的判定与性质(共2小题)
25.(2022•贵港)如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O经过点C且与AB边相切于点E,∠FAC=∠BDC.
(1)求证:AF是⊙O的切线;
(2)若BC=6,sinB=,求⊙O的半径及OD的长.
【解答】(1)证明:如图,作OH⊥FA,垂足为H,连接OE,
∵∠ACB=90°,D是AB的中点,
∴CD=AD=,
∴∠CAD=∠ACD,
∵∠BDC=∠CAD+∠ACD=2∠CAD,
又∵∠FAC=,
∴∠FAC=∠CAB,
即AC是∠FAB的平分线,
∵点O在AC上,⊙O与AB相切于点E,
∴OE⊥AB,且OE是⊙O的半径,
∴OH=OE,OH是⊙O的半径,
∴AF是⊙O的切线;
(2)解:如图,在△ABC中,∠ACB=90°,BC=6,sinB=,
∴可设AC=4x,AB=5x,
∴(5x)2﹣(4x)2=62,
∴x=2,
则AC=8,AB=10,
设⊙O的半径为r,则OC=OE=r,
∵Rt△AOE∽Rt△ABC,
∴,
即,
∴r=3,
∴AE=4,
又∵AD=5,
∴DE=1,
在Rt△ODE中,由勾股定理得:OD=.
26.(2022•玉林)如图,在矩形ABCD中,AB=8,AD=4,点E是DC边上的任一点(不包括端点D,C),过点A作AF⊥AE交CB的延长线于点F,设DE=a.
(1)求BF的长(用含a的代数式表示);
(2)连接EF交AB于点G,连接GC,当GC∥AE时,求证:四边形AGCE是菱形.
【解答】(1)解:∵四边形ABCD是矩形,
∴∠ADE=∠ABF=∠BAD=90°,
∴∠DAE+∠BAE=90°,
∵AF⊥AE,
∴∠BAF+∠BAE=90°,
∴∠DAE=∠BAF,
∴△ADE∽△ABF,
∴,即,
∴BF=2a,
(2)证明:∵四边形ABCD是矩形,
∴AG∥CE,
∵GC∥AE,
∴四边形AGCE是平行四边形.
∴AG=CE=8﹣a,
∴BG=AB﹣AG=8﹣(8﹣a)=a,
在Rt△BGF中,GF2=a2+(2a)2=5a2,
在Rt△CEF中,EF2=(2a+4)2+(8﹣a)2=5a2+80,
在Rt△ADE中,AE2=42+a2=16+a2,
如图,过点G作GM⊥AF于点M,
∴GM∥AE,
∴△MGF∽△AEF,
∴,
∴,
∴=,
∴GM=a,
∴GM=BG,
又∵GM⊥AF,GB⊥FC,
∴GF是∠AFB的角平分线,
∴EA=EC,
∴平行四边形AGCE是菱形.
解法二:∵AG∥CE,CG∥AE,
∴四边形AGCE是平行四边形,
∴AG=CE,
∵AB=CD,
∴BG=DE=a,
∴tan∠EFC===,
∴EC=a+2=8﹣a
∴a=3,
∴AE==5,
∴AE=CE=5,
∴四边形AGCE是菱形.
一十一.解直角三角形(共1小题)
27.(2022•贺州)如图,在平行四边形ABCD中,点E,F分别在AD,BC上,且ED=BF,连接AF,CE,AC,EF,且AC与EF相交于点O.
(1)求证:四边形AFCE是平行四边形;
(2)若AC平分∠FAE,AC=8,tan∠DAC=,求四边形AFCE的面积.
【解答】(1)证明:∵在平行四边形ABCD中,
AD=BC.AE∥FC,
∵ED=BF,
∴AD﹣ED=BC﹣BF,
∴AE=FC,
∴四边形AFCE是平行四边形;
(2)解:∵AE∥FC,
∴∠EAC=∠ACF,
∴∠EAC=∠FAC,
∴∠ACF=∠FAC,
∴AF=FC,
∵四边形AFCE是平行四边形,
∴平行四边形AFCE是菱形,
∴AO=AC=4,AC⊥EF,
在Rt△AOE中,AO=4,tan∠DAC=,
∴EO=3,
∴S△AEO=AO•EO=6,
S菱形=4S△AEO=24.
一十二.解直角三角形的应用(共1小题)
28.(2022•梧州)今年,我国“巅峰使命”2022珠峰科考团对珠穆朗玛峰进行综合科学考察,搭建了世界最高海拔的自动气象站,还通过释放气球方式进行了高空探测.某学校兴趣小组开展实践活动,通过观测数据,计算气球升空的高度AB.
如图,在平面内,点B,C,D在同一直线上,AB⊥CB,垂足为点B,∠ACB=52°,∠ADB=60°,CD=200m,求AB的高度.(精确到1m)
(参考数据:sin52°≈0.79,cos52°≈0.62,tan52°≈1.28,≈1.73)
【解答】解:设AB=xm,
在Rt△ABC中,
∵tan∠ACB=,
∴tan52°=,
∴BC=.
在Rt△ABD中,
∵tan∠ADB=,
∴tan60°=,
∴BD=.
∵CD=CB﹣DB,
∴=200,
解得:x≈984.
∴AB的高度约为984米.
一十三.解直角三角形的应用-仰角俯角问题(共1小题)
29.(2022•贺州)如图,在小明家附近有一座废旧的烟囱,为了乡村振兴,美化环境,政府计划把这片区域改造为公园.现决定用爆破的方式拆除该烟囱,为确定安全范围,需测量烟囱的高度AB,因为不能直接到达烟囱底部B处,测量人员用高为1.2m的测角器在与烟囱底部B成一直线的C,D两处地面上,分别测得烟囱顶部A的仰角∠B′C′A=60°,∠B′D′A=30°,同时量得CD为60m.问烟囱AB的高度为多少米?(精确到0.1m,参考数据:≈1.414,≈1.732)
【解答】解:由题意得:
BB′=DD′=CC′=1.2米,D′C′=DC=60米,
∵∠AC′B′是△AD′C′的一个外角,
∴∠D′AC′=∠AC′B′﹣∠AD′B′=30°,
∴∠AD′C′=∠D′AC′=30°,
∴D′C′=AC′=60米,
在Rt△AC′B′中,∠AC′B′=60°,
∴AB′=AC′•sin60°=60×=30(米),
∴AB=AB′+BB′=30+1.2≈53.2(米),
∴烟囱AB的高度约为53.2米.
一十四.条形统计图(共1小题)
30.(2022•桂林)某校将举办的“壮乡三月三”民族运动会中共有四个项目:A跳长绳,B抛绣球,C拔河,D跳竹竿舞.该校学生会围绕“你最喜欢的项目是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表:
项目
内容
百分比
A
跳长绳
25%
B
抛绣球
35%
C
拔河
30%
D
跳竹竿舞
a
请结合统计图表,回答下列问题:
(1)填空:a= 10% ;
(2)本次调查的学生总人数是多少?
(3)请将条形统计图补充完整;
(4)李红同学准备从抛绣球和跳竹竿舞两个项目中选择一项参加,但她拿不定主意,请你结合调查统计结果给她一些合理化建议进行选择.
【解答】解:(1)a=1﹣35%﹣25%﹣30%=10%,
故答案为:10%;
(2)25÷25%=100(人),
答:本次调查的学生总人数是100人;
(3)B类学生人数:100×35%=35,
(4)建议选择跳竹竿舞,因为选择跳竹竿舞的人数比较少,得名次的可能性大.
一十五.列表法与树状图法(共3小题)
31.(2022•河池)为喜迎中国共产党第二十次全国代表大会的召开,红星中学举行党史知识竞赛.团委随机抽取了部分学生的成绩作为样本,把成绩按达标,良好,优秀,优异四个等级分别进行统计,并将所得数据绘制成如下不完整的统计图.
请根据图中提供的信息,解答下列问题:
(1)本次调查的样本容量是 50 ,圆心角β= 144 度;
(2)补全条形统计图;
(3)已知红星中学共有1200名学生,估计此次竞赛该校获优异等级的学生人数为多少?
(4)若在这次竞赛中有A,B,C,D四人成绩均为满分,现从中抽取2人代表学校参加县级比赛.请用列表或画树状图的方法求出恰好抽到A,C两人同时参赛的概率.
【解答】解:(1)本次调查的样本容量是:10÷20%=50,
则圆心角β=360°×=144°,
故答案为:50,144;
(2)成绩优秀的人数为:50﹣2﹣10﹣20=18(人),
补全条形统计图如下:
(3)1200×=480(人),
答:估计此次竞赛该校获优异等级的学生人数为480人;
(4)画树状图如下:
共有12种等可能的结果,其中恰好抽到A,C两人同时参赛的结果有2种,
∴恰好抽到A,C两人同时参赛的概率为=.
32.(2022•百色)学校举行“爱我中华,朗诵经典”班级朗诵比赛,黄老师收集了所有参赛班级的成绩后,把成绩x(满分100分)分成四个等级(A:90≤x≤100,B:80≤x<90,C:70≤x<80,D:60≤x<70)进行统计,并绘制成如下不完整的条形统计图和扇形统计图.
根据信息作答:
(1)参赛班级总数有 40 个;m= 30 ;
(2)补全条形统计图;
(3)统计发现D等级中七年级、八年级各有两个班,为了提高D等级班级的朗诵水平,语文组老师计划从D等级班级中任选两个班进行首轮培训,求选中两个班恰好是同一个年级的概率(用画树状图或列表法把所有可能结果表示出来).
【解答】解:(1)从两个统计图中可知,成绩在“A等级”的有8人,占调查人数的20%,由频率=得,
调查人数为:8÷20%=40(人),
成绩在“C等级”的学生人数为:40﹣8﹣16﹣4=12(人),
成绩在“C等级”所占的百分比为:12÷40=30%,即m=30,
故答案为:40,30;
(2)补全条形统计图如下:
(3)从D等级的七年级2个班,八年级2个班中,随机抽取2个班,所有可能出现的结果情况如下:
共有12种可能出现的结果,其中来自同一年级的有4种,
所以从D等级的七年级2个班,八年级2个班中,随机抽取2个班,来自同一年级的概率为=.
33.(2022•梧州)某校团委为了解学生关注“2022年北京冬奥会”情况,以随机抽样的方式对学生进行问卷调查,学生只选择一个运动项目作为最关注项目,把调查结果分为“滑雪”“滑冰”“冰球”“冰壶”“其他”五类,绘制成统计图①和图②.
(1)本次抽样调查的学生共 50 人;
(2)将图①补充完整;
(3)在这次抽样的学生中,挑选了甲,乙,丙,丁四名学生进行相关培训,最后从这四名学生中随机抽取2名进行“爱我北京冬奥”主题演讲.请用画树状图法或列表法求出抽中两名学生分别是甲和乙的概率.
【解答】解:(1)5÷10%=50(人),
故答案为:50;
(2)50﹣28﹣5﹣4﹣3=10(人),
补全条形统计图如下:
(3)用列表法表示所有可能出现的结果如下:
共有12种可能出现的结果情况,其中抽取的2人是甲、乙的有2种,
所以抽中两名学生分别是甲和乙的概率为=.
江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题提升题③: 这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题提升题③,共25页。
江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题提升题②: 这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题提升题②,共24页。
江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题提升题①: 这是一份江苏省2022年各地区中考数学真题按题型难易度分层分类汇编(14套)-05解答题提升题①,共20页。