2022年湖南省武汉市常青第一校中考试题猜想数学试卷含解析
展开
这是一份2022年湖南省武汉市常青第一校中考试题猜想数学试卷含解析,共20页。试卷主要包含了不等式组的正整数解的个数是,如图,在平面直角坐标系中,A等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.如图,数轴上的三点所表示的数分别为,其中,如果|那么该数轴的原点的位置应该在( )
A.点的左边 B.点与点之间 C.点与点之间 D.点的右边
2.估计的值在( )
A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间
3.计算的结果是( )
A. B. C. D.2
4.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是
A.6.75×103吨 B.67.5×103吨 C.6.75×104吨 D.6.75×105吨
5.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具),以下是甲、乙两同学的作业:
甲:①连接OP,作OP的垂直平分线l,交OP于点A;
②以点A为圆心、OA为半径画弧、交⊙O于点M;
③作直线PM,则直线PM即为所求(如图1).
乙:①让直角三角板的一条直角边始终经过点P;
②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;
③作直线PM,则直线PM即为所求(如图2).
对于两人的作业,下列说法正确的是( )
A.甲乙都对 B.甲乙都不对
C.甲对,乙不对 D.甲不对,已对
6.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为( )
A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=100
7.不等式组的正整数解的个数是( )
A.5 B.4 C.3 D.2
8.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为( )
A.23 B.75 C.77 D.139
9.如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM,ON上滑动,下列结论:
①若C,O两点关于AB对称,则OA=;
②C,O两点距离的最大值为4;
③若AB平分CO,则AB⊥CO;
④斜边AB的中点D运动路径的长为π.
其中正确的是( )
A.①② B.①②③ C.①③④ D.①②④
10.如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a≠0)经过△ABC区域(包括边界),则a的取值范围是( )
A. 或
B. 或
C. 或
D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.和平中学自行车停车棚顶部的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为____m.
12.如图,将边长为的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为_______平方单位.
13.如图,△ABC与△DEF位似,点O为位似中心,若AC=3DF,则OE:EB=_____.
14.已知x=2是一元二次方程x2﹣2mx+4=0的一个解, 则m的值为 .
15.若关于x的方程(k﹣1)x2﹣4x﹣5=0有实数根,则k的取值范围是_____.
16.如图,已知抛物线与坐标轴分别交于A,B,C三点,在抛物线上找到一点D,使得∠DCB=∠ACO,则D点坐标为____________________.
三、解答题(共8题,共72分)
17.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:
今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?
译文为:
现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?
请解答上述问题.
18.(8分)某种型号油电混合动力汽车,从A地到B地燃油行驶需纯燃油费用76元,从A地到B地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.求每行驶1千米纯用电的费用;若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?
19.(8分)今年3月12日植树节期间,学校预购进A,B两种树苗.若购进A种树苗3棵,B种树苗5棵,需2100元;若购进A种树苗4棵,B种树苗10棵,需3800元.求购进A,B两种树苗的单价;若该学校准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵.
20.(8分)计算:2tan45°-(-)º-
21.(8分)已知:如图,梯形ABCD,DC∥AB,对角线AC平分∠BCD,点E在边CB的延长线上,EA⊥AC,垂足为点A.
(1)求证:B是EC的中点;
(2)分别延长CD、EA相交于点F,若AC2=DC•EC,求证:AD:AF=AC:FC.
22.(10分)已如:⊙O与⊙O上的一点A
(1)求作:⊙O的内接正六边形ABCDEF;( 要求:尺规作图,不写作法但保留作图痕迹)
(2)连接CE,BF,判断四边形BCEF是否为矩形,并说明理由.
23.(12分)观察与思考:阅读下列材料,并解决后面的问题
在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作AD⊥BC于D(如图(1)),则sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即,同理有:,,所以.
即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.
根据上述材料,完成下列各题.
(1)如图(2),△ABC中,∠B=45°,∠C=75°,BC=60,则∠A= ;AC= ;
(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻.某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75°的方向上,求此时渔政204船距钓鱼岛A的距离AB.(结果精确到0.01,≈2.449)
24.先化简再求值:÷(﹣1),其中x=.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.
【详解】
∵|a|>|c|>|b|,
∴点A到原点的距离最大,点C其次,点B最小,
又∵AB=BC,
∴原点O的位置是在点B、C之间且靠近点B的地方.
故选:C.
【点睛】
此题考查了实数与数轴,理解绝对值的定义是解题的关键.
2、C
【解析】
∵ ,
∴.
即的值在6和7之间.
故选C.
3、C
【解析】
化简二次根式,并进行二次根式的乘法运算,最后合并同类二次根式即可.
【详解】
原式=3﹣2·=3﹣=.
故选C.
【点睛】
本题主要考查二次根式的化简以及二次根式的混合运算.
4、C
【解析】
试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).67500一共5位,从而67 500=6.75×2.故选C.
5、A
【解析】
(1)连接OM,OA,连接OP,作OP的垂直平分线l可得OA=MA=AP,进而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切线,(1)直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切线.
【详解】
证明:(1)如图1,连接OM,OA.
∵连接OP,作OP的垂直平分线l,交OP于点A,∴OA=AP.
∵以点A为圆心、OA为半径画弧、交⊙O于点M;
∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切线;
(1)如图1.
∵直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切线.
故两位同学的作法都正确.
故选A.
【点睛】
本题考查了复杂的作图,重点是运用切线的判定来说明作法的正确性.
6、A
【解析】
利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.
【详解】
由题意知,蔬菜产量的年平均增长率为x,
根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,
2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,
即: 80(1+x)2=100,
故选A.
【点睛】
本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.
7、C
【解析】
先解不等式组得到-1<x≤3,再找出此范围内的正整数.
【详解】
解不等式1-2x<3,得:x>-1,
解不等式≤2,得:x≤3,
则不等式组的解集为-1<x≤3,
所以不等式组的正整数解有1、2、3这3个,
故选C.
【点睛】
本题考查了一元一次不等式组的整数解,解题的关键是正确得出 一元一次不等式组的解集.
8、B
【解析】
由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,…26,由此可得a,b.
【详解】
∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=1.
∵上边的数与左边的数的和正好等于右边的数,∴a=11+1=2.
故选B.
【点睛】
本题考查了数字变化规律,观察出上边的数与左边的数的和正好等于右边的数是解题的关键.
9、D
【解析】
分析:①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB是OC的垂直平分线,所以
②当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;
③如图2,当∠ABO=30°时,易证四边形OACB是矩形,此时AB与CO互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A、C、B、O四点共圆,则AB为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC是直径时,AB与OC互相平分,但AB与OC不一定垂直;
④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.
详解:在Rt△ABC中,∵
∴
①若C.O两点关于AB对称,如图1,
∴AB是OC的垂直平分线,
则
所以①正确;
②如图1,取AB的中点为E,连接OE、CE,
∵
∴
当OC经过点E时,OC最大,
则C.O两点距离的最大值为4;
所以②正确;
③如图2,当时,
∴四边形AOBC是矩形,
∴AB与OC互相平分,
但AB与OC的夹角为不垂直,
所以③不正确;
④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的
则:
所以④正确;
综上所述,本题正确的有:①②④;
故选D.
点睛:属于三角形的综合体,考查了直角三角形的性质,直角三角形斜边上中线的性质,轴对称的性质,弧长公式等,熟练掌握直角三角形斜边的中线等于斜边的一半是解题的关键.
10、B
【解析】
试题解析:如图所示:
分两种情况进行讨论:
当时,抛物线经过点时,抛物线的开口最小,取得最大值抛物线经过△ABC区域(包括边界),的取值范围是:
当时,抛物线经过点时,抛物线的开口最小,取得最小值抛物线经过△ABC区域(包括边界),的取值范围是:
故选B.
点睛:二次函数 二次项系数决定了抛物线开口的方向和开口的大小,
开口向上,开口向下.
的绝对值越大,开口越小.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1.
【解析】
由CD⊥AB,根据垂径定理得到AD=DB=8,再在Rt△OAD中,利用勾股定理计算出OD,则通过CD=OC−OD求出CD.
【详解】
解:∵CD⊥AB,AB=16,
∴AD=DB=8,
在Rt△OAD中,AB=16m,半径OA=10m,
∴OD==6,
∴CD=OC﹣OD=10﹣6=1(m).
故答案为1.
【点睛】
本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了切线的性质定理以及勾股定理.
12、6﹣2
【解析】
由旋转角∠BAB′=30°,可知∠DAB′=90°﹣30°=60°;设B′C′和CD的交点是O,连接OA,构造全等三角形,用S阴影部分=S正方形﹣S四边形AB′OD,计算面积即可.
【详解】
解:设B′C′和CD的交点是O,连接OA,
∵AD=AB′,AO=AO,∠D=∠B′=90°,
∴Rt△ADO≌Rt△AB′O,
∴∠OAD=∠OAB′=30°,
∴OD=OB′= ,
S四边形AB′OD=2S△AOD=2××=2,
∴S阴影部分=S正方形﹣S四边形AB′OD=6﹣2.
【点睛】
此题的重点是能够计算出四边形的面积.注意发现全等三角形.
13、1:2
【解析】
△ABC与△DEF是位似三角形,则DF∥AC,EF∥BC,先证明△OAC∽△ODF,利用相似比求得AC=3DF,所以可求OE:OB=DF:AC=1:3,据此可得答案.
【详解】
解:∵△ABC与△DEF是位似三角形,
∴DF∥AC,EF∥BC
∴△OAC∽△ODF,OE:OB=OF:OC
∴OF:OC=DF:AC
∵AC=3DF
∴OE:OB=DF:AC=1:3,
则OE:EB=1:2
故答案为:1:2
【点睛】
本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,位似图形的对应顶点的连线平行或共线.
14、1.
【解析】
试题分析:直接把x=1代入已知方程就得到关于m的方程,再解此方程即可.
试题解析:∵x=1是一元二次方程x1-1mx+4=0的一个解,
∴4-4m+4=0,
∴m=1.
考点:一元二次方程的解.
15、
【解析】
当k−1=0,即k=1时,原方程为−4x−5=0,
解得:x=−,
∴k=1符合题意;
当k−1≠0,即k≠1时,有,
解得:k⩾且k≠1.
综上可得:k的取值范围为k⩾.
故答案为k⩾.
16、(,),(-4,-5)
【解析】
求出点A、B、C的坐标,当D在x轴下方时,设直线CD与x轴交于点E,由于∠DCB=∠ACO.所以tan∠DCB=tan∠ACO,从而可求出E的坐标,再求出CE的直线解析式,联立抛物线即可求出D的坐标,再由对称性即可求出D在x轴上方时的坐标.
【详解】
令y=0代入y=-x2-2x+3,
∴x=-3或x=1,
∴OA=1,OB=3,
令x=0代入y=-x2-2x+3,
∴y=3,
∴OC=3,
当点D在x轴下方时,
∴设直线CD与x轴交于点E,过点E作EG⊥CB于点G,
∵OB=OC,
∴∠CBO=45°,
∴BG=EG,OB=OC=3,
∴由勾股定理可知:BC=3,
设EG=x,
∴CG=3-x,
∵∠DCB=∠ACO.
∴tan∠DCB=tan∠ACO=,
∴,
∴x=,
∴BE=x=,
∴OE=OB-BE=,
∴E(-,0),
设CE的解析式为y=mx+n,交抛物线于点D2,
把C(0,3)和E(-,0)代入y=mx+n,
∴,解得:.
∴直线CE的解析式为:y=2x+3,
联立
解得:x=-4或x=0,
∴D2的坐标为(-4,-5)
设点E关于BC的对称点为F,
连接FB,
∴∠FBC=45°,
∴FB⊥OB,
∴FB=BE=,
∴F(-3,)
设CF的解析式为y=ax+b,
把C(0,3)和(-3,)代入y=ax+b
解得:,
∴直线CF的解析式为:y=x+3,
联立
解得:x=0或x=-
∴D1的坐标为(-,)
故答案为(-,)或(-4,-5)
【点睛】
本题考查二次函数的综合问题,解题的关键是根据对称性求出相关点的坐标,利用直线解析式以及抛物线的解析式即可求出点D的坐标.
三、解答题(共8题,共72分)
17、共有7人,这个物品的价格是53元.
【解析】
根据题意,找出等量关系,列出一元一次方程.
【详解】
解:设共有x人,这个物品的价格是y元,
解得
答:共有7人,这个物品的价格是53元.
【点睛】
本题考查了二元一次方程的应用.
18、(1)每行驶1千米纯用电的费用为0.26元.(2)至少需用电行驶74千米.
【解析】
(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;
(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.
【详解】
(1)设每行驶1千米纯用电的费用为x元,根据题意得:
=
解得:x=0.26
经检验,x=0.26是原分式方程的解,
答:每行驶1千米纯用电的费用为0.26元;
(2)从A地到B地油电混合行驶,用电行驶y千米,得:
0.26y+(﹣y)×(0.26+0.50)≤39
解得:y≥74,即至少用电行驶74千米.
19、(1)A种树苗的单价为200元,B种树苗的单价为300元;(2)10棵
【解析】
试题分析:(1)设B种树苗的单价为x元,则A种树苗的单价为y元.则由等量关系列出方程组解答即可;
(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,然后根据总费用和两种树苗的棵数关系列出不等式解答即可.
试题解析:(1)设B种树苗的单价为x元,则A种树苗的单价为y元,
可得:,
解得:,
答:A种树苗的单价为200元,B种树苗的单价为300元.
(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,
可得:200a+300(30﹣a)≤8000,
解得:a≥10,
答:A种树苗至少需购进10棵.
考点:1.一元一次不等式的应用;2.二元一次方程组的应用
20、2-
【解析】
先求三角函数,再根据实数混合运算法计算.
【详解】
解:原式=2×1-1-=1+1-=2-
【点睛】
此题重点考察学生对三角函数值的应用,掌握特殊角的三角函数值是解题的关键.
21、(1)详见解析;(2)详见解析.
【解析】
(1)根据平行线的性质结合角平分线的性质可得出∠BCA=∠BAC,进而可得出BA=BC,根据等角的余角相等结合等角对等边,即可得出AB=BE,进而可得出BE=BA=BC,此题得证;
(2)根据AC2=DC•EC结合∠ACD=∠ECA可得出△ACD∽△ECA,根据相似三角形的性质可得出∠ADC=∠EAC=90°,进而可得出∠FDA=∠FAC=90°,结合∠AFD=∠CFA可得出△AFD∽△CFA,再利用相似三角形的性质可证出AD:AF=AC:FC.
【详解】
(1)∵DC∥AB,∴∠DCA=∠BAC.
∵AC平分∠BCD,∴∠BCA=∠BAC=∠DCA,∴BA=BC.
∵∠BAC+∠BAE=90°,∠ACB+∠E =90°,∴∠BAE=∠E,∴AB=BE,∴BE=BA=BC,∴B是EC的中点;
(2)∵AC2=DC•EC,∴.
∵∠ACD=∠ECA,∴△ACD∽△ECA,∴∠ADC=∠EAC=90°,∴∠FDA=∠FAC=90°.
又∵∠AFD=∠CFA,∴△AFD∽△CFA,∴AD:AF=AC:FC.
【点睛】
本题考查了相似三角形的判定与性质、角平分线的性质以及等腰三角形的性质,解题的关键是:(1)利用等角对等边找出BA=BC、BE=BA;(2)利用相似三角形的判定定理找出△AFD∽△CFA.
22、(1)答案见解析;(2)证明见解析.
【解析】
(1)如图,在⊙O上依次截取六段弦,使它们都等于OA,从而得到正六边形ABCDEF;
(2)连接BE,如图,利用正六边形的性质得AB=BC=CD=DE=EF=FA,,则判断BE为直径,所以∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,然后判断四边形BCEF为矩形.
【详解】
解:(1)如图,正六边形ABCDEF为所作;
(2)四边形BCEF为矩形.理由如下:
连接BE,如图,
∵六边形ABCDEF为正六边形,
∴AB=BC=CD=DE=EF=FA,
∴,
∴,
∴,
∴BE为直径,
∴∠BFE=∠BCE=90°,
同理可得∠FBC=∠CEF=90°,
∴四边形BCEF为矩形.
【点睛】
本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了矩形的判定与正六边形的性质.
23、(1)60,20;(2)渔政船距海岛A的距离AB约为24.49海里.
【解析】
(1)利用题目总结的正弦定理,将有关数据代入求解即可;
(2)在△ABC中,分别求得BC的长和三个内角的度数,利用题目中总结的正弦定理求AC的长即可.
【详解】
(1)由正玄定理得:∠A=60°,AC=20;
故答案为60°,20;
(2)如图:
依题意,得BC=40×0.5=20(海里).
∵CD∥BE,
∴∠DCB+∠CBE=180°.
∵∠DCB=30°,∴∠CBE=150°.
∵∠ABE=75°,∴∠ABC=75°,
∴∠A=45°.
在△ABC中,,
即,
解得AB=10≈24.49(海里).
答:渔政船距海岛A的距离AB约为24.49海里.
【点睛】
本题考查了方向角的知识,更重要的是考查了同学们的阅读理解能力,通过材料总结出学生们没有接触的知识,并根据此知识点解决相关的问题,是近几年中考的高频考点.
24、
【解析】
分析:根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
详解:原式=
=
=
=
当时,原式==.
点睛:本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.
相关试卷
这是一份湖北省武汉市江汉区常青第一校2022年中考五模数学试题含解析,共22页。
这是一份湖南省武汉市常青第一校2022年中考数学四模试卷含解析,共20页。
这是一份2022年湖南省平江县中考试题猜想数学试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,如图所示的几何体的主视图是,抛物线y=3等内容,欢迎下载使用。