|试卷下载
搜索
    上传资料 赚现金
    2022届湖北省武汉市新洲区中考试题猜想数学试卷含解析
    立即下载
    加入资料篮
    2022届湖北省武汉市新洲区中考试题猜想数学试卷含解析01
    2022届湖北省武汉市新洲区中考试题猜想数学试卷含解析02
    2022届湖北省武汉市新洲区中考试题猜想数学试卷含解析03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届湖北省武汉市新洲区中考试题猜想数学试卷含解析

    展开
    这是一份2022届湖北省武汉市新洲区中考试题猜想数学试卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,下列运算错误的是,7的相反数是,下列各数等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.在数轴上到原点距离等于3的数是( )
    A.3 B.﹣3 C.3或﹣3 D.不知道
    2.如图的立体图形,从左面看可能是(  )

    A. B.
    C. D.
    3.下列因式分解正确的是( )
    A.x2+9=(x+3)2 B.a2+2a+4=(a+2)2
    C.a3-4a2=a2(a-4) D.1-4x2=(1+4x)(1-4x)
    4.一个圆锥的侧面积是12π,它的底面半径是3,则它的母线长等于(  )
    A.2 B.3 C.4 D.6
    5.下列调查中,调查方式选择合理的是(  )
    A.为了解襄阳市初中每天锻炼所用时间,选择全面调查
    B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查
    C.为了解神舟飞船设备零件的质量情况,选择抽样调查
    D.为了解一批节能灯的使用寿命,选择抽样调查
    6.下列运算错误的是(  )
    A.(m2)3=m6 B.a10÷a9=a C.x3•x5=x8 D.a4+a3=a7
    7.关于▱ABCD的叙述,不正确的是(  )
    A.若AB⊥BC,则▱ABCD是矩形
    B.若AC⊥BD,则▱ABCD是正方形
    C.若AC=BD,则▱ABCD是矩形
    D.若AB=AD,则▱ABCD是菱形
    8.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A测得旗杆顶端E的俯角α是45°,旗杆低端D到大楼前梯砍底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为( )(精确到0.1米,参考数据:)

    A.30.6米 B.32.1 米 C.37.9米 D.39.4米
    9.7的相反数是( )
    A.7 B.-7 C. D.-
    10.下列各数:1.414,,﹣,0,其中是无理数的为( )
    A.1.414 B. C.﹣ D.0
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.分解因式:x2﹣1=____.
    12.计算:|﹣5|﹣=_____.
    13.若,则= .
    14.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是________.

    15.如图,在△ABC中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形的面积之和(即阴影部分)为 cm2(结果保留π).

    16.不解方程,判断方程2x2+3x﹣2=0的根的情况是_____.
    三、解答题(共8题,共72分)
    17.(8分)已知抛物线y=x2﹣6x+9与直线y=x+3交于A,B两点(点A在点B的左侧),抛物线的顶点为C,直线y=x+3与x轴交于点D.
    (1)求抛物线的顶点C的坐标及A,B两点的坐标;
    (2)将抛物线y=x2﹣6x+9向上平移1个单位长度,再向左平移t(t>0)个单位长度得到新抛物线,若新抛物线的顶点E在△DAC内,求t的取值范围;
    (3)点P(m,n)(﹣3<m<1)是抛物线y=x2﹣6x+9上一点,当△PAB的面积是△ABC面积的2倍时,求m,n的值.
    18.(8分)如图,已知反比例函数和一次函数的图象相交于第一象限内的点A,且点A的横坐标为1.过点A作AB⊥x轴于点B,△AOB的面积为1.
    求反比例函数和一次函数的解析式.若一次函数的图象与x轴相交于点C,求∠ACO的度数.结合图象直接写出:当>>0时,x的取值范围.
    19.(8分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
    (1)求证:四边形DEBF是矩形;
    (2)若AF平分∠DAB,AE=3,BF=4,求▱ABCD的面积.

    20.(8分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kgA级别和20kgB级别茶叶的利润为4000元,销售20kgA级别和10kgB级别茶叶的利润为3500元.
    (1)求每千克A级别茶叶和B级别茶叶的销售利润;
    (2)若该经销商一次购进两种级别的茶叶共200kg用于出口,其中B级别茶叶的进货量不超过A级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.
    21.(8分)解方程:3x2﹣2x﹣2=1.
    22.(10分)某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.
    (1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?
    (2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)
    23.(12分)如图,已知在⊙O中,AB是⊙O的直径,AC=8,BC=1.求⊙O的面积;若D为⊙O上一点,且△ABD为等腰三角形,求CD的长.

    24.如图,在航线l的两侧分别有观测点A和B,点A到航线的距离为2km,点B位于点A北偏东60°方向且与A相距10km.现有一艘轮船从位于点B南偏西76°方向的C处,正沿该航线自西向东航行,5分钟后该轮船行至点A的正北方向的D处.

    (1)求观测点B到航线的距离;
    (2)求该轮船航行的速度(结果精确到0.1km/h).
    (参考数据: ≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    根据数轴上到原点距离等于3的数为绝对值是3的数即可求解.
    【详解】
    绝对值为3的数有3,-3.故答案为C.
    【点睛】
    本题考查数轴上距离的意义,解题的关键是知道数轴上的点到原点的距离为绝对值.
    2、A
    【解析】
    根据三视图的性质即可解题.
    【详解】
    解:根据三视图的概念可知,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角,
    故选A.
    【点睛】
    本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.
    3、C
    【解析】
    试题分析:A、B无法进行因式分解;C正确;D、原式=(1+2x)(1-2x)
    故选C,考点:因式分解
    【详解】
    请在此输入详解!
    4、C
    【解析】
    设母线长为R,底面半径是3cm,则底面周长=6π,侧面积=3πR=12π,
    ∴R=4cm.
    故选C.
    5、D
    【解析】
    A.为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;
    B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;
    C.为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;
    D.为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;
    故选D.
    6、D
    【解析】
    【分析】利用合并同类项法则,单项式乘以单项式法则,同底数幂的乘法、除法的运算法则逐项进行计算即可得.
    【详解】A、(m2)3=m6,正确;
    B、a10÷a9=a,正确;
    C、x3•x5=x8,正确;
    D、a4+a3=a4+a3,错误,
    故选D.
    【点睛】本题考查了合并同类项、单项式乘以单项式、同底数幂的乘除法,熟练掌握各运算的运算法则是解题的关键.
    7、B
    【解析】
    由矩形和菱形的判定方法得出A、C、D正确,B不正确;即可得出结论.
    【详解】
    解:A、若AB⊥BC,则是矩形,正确;
    B、若,则是正方形,不正确;
    C、若,则是矩形,正确;
    D、若,则是菱形,正确;
    故选B.
    【点睛】
    本题考查了正方形的判定、矩形的判定、菱形的判定;熟练掌握正方形的判定、矩形的判定、菱形的判定是解题的关键.
    8、D
    【解析】
    解:延长AB交DC于H,作EG⊥AB于G,如图所示,则GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,设BH=x米,则CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:,解得:x=6,∴BH=6米,CH=米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=+20(米),∴AB=AG+BG=+20+9≈39.4(米).故选D.

    9、B
    【解析】
    根据只有符号不同的两个数互为相反数,可得答案.
    【详解】
    7的相反数是−7,
    故选:B.
    【点睛】
    此题考查相反数,解题关键在于掌握其定义.
    10、B
    【解析】
    试题分析:根据无理数的定义可得是无理数.故答案选B.
    考点:无理数的定义.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、(x+1)(x﹣1).
    【解析】
    试题解析:x2﹣1=(x+1)(x﹣1).
    考点:因式分解﹣运用公式法.
    12、1
    【解析】
    分析:直接利用二次根式以及绝对值的性质分别化简得出答案.
    详解:原式=5-3
    =1.
    故答案为1.
    点睛:此题主要考查了实数运算,正确化简各数是解题关键.
    13、1.
    【解析】
    试题分析:有意义,必须,,解得:x=3,代入得:y=0+0+2=2,∴==1.故答案为1.
    考点:二次根式有意义的条件.
    14、
    【解析】
    解:连接AG,由旋转变换的性质可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,
    ∴DG=DC﹣CG=1,则AG==,
    ∵ ,∠ABG=∠CBE,
    ∴△ABG∽△CBE,
    ∴,
    解得,CE=,
    故答案为.

    【点睛】
    本题考查的是旋转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.
    15、.
    【解析】
    图中阴影部分的面积就是两个扇形的面积,圆A,B的半径为2cm,则根据扇形面积公式可得阴影面积.
    【详解】
    (cm2).
    故答案为.
    考点:1、扇形的面积公式;2、两圆相外切的性质.
    16、有两个不相等的实数根.
    【解析】
    分析:先求一元二次方程的判别式,由△与0的大小关系来判断方程根的情况.
    详解:∵a=2,b=3,c=−2,

    ∴一元二次方程有两个不相等的实数根.
    故答案为有两个不相等的实数根.
    点睛:考查一元二次方程根的判别式,
    当时,方程有两个不相等的实数根.
    当时,方程有两个相等的实数根.
    当时,方程没有实数根.

    三、解答题(共8题,共72分)
    17、(1)C(2,0),A(1,4),B(1,9);(2)<t<5;(2)m=,∴n=.
    【解析】
    分析:(Ⅰ)将抛物线的一般式配方为顶点式即可求出点C的坐标,联立抛物线与直线的解析式即可求出A、B的坐标.
    (Ⅱ)由题意可知:新抛物线的顶点坐标为(2﹣t,1),然后求出直线AC的解析式后,将点E的坐标分别代入直线AC与AD的解析式中即可求出t的值,从而可知新抛物线的顶点E在△DAC内,求t的取值范围.
    (Ⅲ)直线AB与y轴交于点F,连接CF,过点P作PM⊥AB于点M,PN⊥x轴于点N,交DB于点G,由直线y=x+2与x轴交于点D,与y轴交于点F,得D(﹣2,0),F(0,2),易得CF⊥AB,△PAB的面积是△ABC面积的2倍,所以AB•PM=AB•CF,PM=2CF=1,从而可求出PG=3,利用点G在直线y=x+2上,P(m,n),所以G(m,m+2),所以PG=n﹣(m+2),所以n=m+4,由于P(m,n)在抛物线y=x2﹣1x+9上,联立方程从而可求出m、n的值.
    详解:(I)∵y=x2﹣1x+9=(x﹣2)2,∴顶点坐标为(2,0).
    联立,
    解得:或;
    (II)由题意可知:新抛物线的顶点坐标为(2﹣t,1),设直线AC的解析式为y=kx+b
    将A(1,4),C(2,0)代入y=kx+b中,∴,
    解得:,
    ∴直线AC的解析式为y=﹣2x+1.
    当点E在直线AC上时,﹣2(2﹣t)+1=1,解得:t=.
    当点E在直线AD上时,(2﹣t)+2=1,解得:t=5,
    ∴当点E在△DAC内时,<t<5;
    (III)如图,直线AB与y轴交于点F,连接CF,过点P作PM⊥AB于点M,PN⊥x轴于点N,交DB于点G.
    由直线y=x+2与x轴交于点D,与y轴交于点F,
    得D(﹣2,0),F(0,2),∴OD=OF=2.
    ∵∠FOD=90°,∴∠OFD=∠ODF=45°.
    ∵OC=OF=2,∠FOC=90°,
    ∴CF==2,∠OFC=∠OCF=45°,
    ∴∠DFC=∠DFO+∠OFC=45°+45°=90°,∴CF⊥AB.
    ∵△PAB的面积是△ABC面积的2倍,∴AB•PM=AB•CF,
    ∴PM=2CF=1.
    ∵PN⊥x轴,∠FDO=45°,∴∠DGN=45°,∴∠PGM=45°.
    在Rt△PGM中,sin∠PGM=, ∴PG===3.
    ∵点G在直线y=x+2上,P(m,n), ∴G(m,m+2).
    ∵﹣2<m<1,∴点P在点G的上方,∴PG=n﹣(m+2),∴n=m+4.
    ∵P(m,n)在抛物线y=x2﹣1x+9上,
    ∴m2﹣1m+9=n,∴m2﹣1m+9=m+4,解得:m=.
    ∵﹣2<m<1,∴m=不合题意,舍去,∴m=,∴n=m+4=.

    点睛:本题是二次函数综合题,涉及待定系数法,解方程,勾股定理,三角形的面积公式,综合程度较高,需要学生综合运用所学知识.
    18、(1)y=;y=x+1;(2)∠ACO=45°;(3)0 【解析】
    (1)根据△AOB的面积可求AB,得A点坐标.从而易求两个函数的解析式;
    (2)求出C点坐标,在△ABC中运用三角函数可求∠ACO的度数;
    (3)观察第一象限内的图形,反比例函数的图象在一次函数的图象的上面部分对应的x的值即为取值范围.
    【详解】
    (1)∵△AOB的面积为1,并且点A在第一象限,
    ∴k=2,∴y=;
    ∵点A的横坐标为1,
    ∴A(1,2).
    把A(1,2)代入y=ax+1得,a=1.
    ∴y=x+1.
    (2)令y=0,0=x+1,
    ∴x=−1,
    ∴C(−1,0).
    ∴OC=1,BC=OB+OC=2.
    ∴AB=CB,
    ∴∠ACO=45°.
    (3)由图象可知,在第一象限,当y>y>0时,0 在第三象限,当y>y>0时,−1 【点睛】
    此题考查反比例函数与一次函数的交点问题,解题关键在于结合函数图象进行解答.
    19、(1)证明见解析(2)3
    【解析】
    试题分析:(1)根据平行四边形的性质,可证DF∥EB,然后根据一组对边平行且相等的四边形为平行四边形可证四边形DEBF是平行四边形,然后根据有一个角是直角的平行四边形是矩形可证;
    (2)根据(1)可知DE=BF,然后根据勾股定理可求AD的长,然后根据角平分线的性质和平行线的性质可求得DF=AD,然后可求CD的长,最后可用平行四边形的面积公式可求解.
    试题解析:(1)∵四边形ABCD是平行四边形,
    ∴DC∥AB,即DF∥EB.
    又∵DF=BE,
    ∴四边形DEBF是平行四边形.
    ∵DE⊥AB,
    ∴∠EDB=90°.
    ∴四边形DEBF是矩形.
    (2)∵四边形DEBF是矩形,
    ∴DE=BF=4,BD=DF.
    ∵DE⊥AB,
    ∴AD===1.
    ∵DC∥AB,
    ∴∠DFA=∠FAB.
    ∵AF平分∠DAB,
    ∴∠DAF=∠FAB.
    ∴∠DAF=∠DFA.
    ∴DF=AD=1.
    ∴BE=1.
    ∴AB=AE+BE=3+1=2.
    ∴S□ABCD=AB·BF=2×4=3.
    20、(1)100元和150元;(2)购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.
    【解析】
    试题分析:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元;
    (2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200-a)kg.销售总利润为w元.构建一次函数,利用一次函数的性质即可解决问题.
    试题解析:解:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元.
    由题意,
    解得,
    答:每千克A级别茶叶和B级别茶叶的销售利润分别为100元和150元.
    (2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200﹣a)kg.销售总利润为w元.
    由题意w=100a+150(200﹣a)=﹣50a+30000,
    ∵﹣50<0,
    ∴w随x的增大而减小,
    ∴当a取最小值,w有最大值,
    ∵200﹣a≤2a,
    ∴a≥,
    ∴当a=67时,w最小=﹣50×67+30000=26650(元),
    此时200﹣67=133kg,
    答:购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.
    点睛:本题考查一次函数的应用、二元一次方程组、不等式等知识,解题的关键是理解题意,学会利用参数构建一次函数或方程解决问题.
    21、
    【解析】
    先找出a,b,c,再求出b2-4ac=28,根据公式即可求出答案.
    【详解】
    解:x= =

    ∴原方程的解为.
    【点睛】
    本题考查对解一元二次方程-提公因式法、公式法,因式分解法等知识点的理解和掌握,能熟练地运用公式法解一元二次方程是解此题的关键.
    22、 (1) 商店购进甲种商品40件,购进乙种商品60件;(2) 应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
    【解析】
    (1)设购进甲、乙两种商品分别为x件与y件,根据甲种商品件数+乙种商品件数=100,甲商品的总进价+乙种商品的总进价=2700,列出关于x与y的方程组,求出方程组的解即可得到x与y的值,得到购进甲、乙两种商品的件数;
    (2)设商店购进甲种商品a件,则购进乙种商品(100-a)件,根据甲商品的总进价+乙种商品的总进价小于等于3100,甲商品的总利润+乙商品的总利润大于等于890列出关于a的不等式组,求出不等式组的解集,得到a的取值范围,根据a为正整数得出a的值,再表示总利润W,发现W与a成一次函数关系式,且为减函数,故a取最小值时,W最大,即可求出所求的进货方案与最大利润.
    【详解】
    (1)设购进甲种商品x件,购进乙商品y件,
    根据题意得:

    解得:,
    答:商店购进甲种商品40件,购进乙种商品60件;
    (2)设商店购进甲种商品a件,则购进乙种商品(100﹣a)件,
    根据题意列得:

    解得:20≤a≤22,
    ∵总利润W=5a+10(100﹣a)=﹣5a+1000,W是关于a的一次函数,W随a的增大而减小,
    ∴当a=20时,W有最大值,此时W=900,且100﹣20=80,
    答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
    【点睛】
    此题考查了二元一次方程组的应用,一次函数的性质,以及一元一次不等式组的应用,弄清题中的等量关系及不等关系是解本题的关键.
    23、(1)25π;(2)CD1=,CD2=7
    【解析】
    分析:(1)利用圆周角定理的推论得到∠C是直角,利用勾股定理求出直径AB,再利用圆的面积公式即可得到答案;
    (2)分点D在上半圆中点与点D在下半圆中点这两种情况进行计算即可.
    详解:(1)∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∵AB是⊙O的直径,
    ∴AC=8,BC=1,
    ∴AB=10,
    ∴⊙O的面积=π×52=25π.
    (2)有两种情况:
    ①如图所示,当点D位于上半圆中点D1时,可知△ABD1是等腰直角三角形,且OD1⊥AB,

    作CE⊥AB垂足为E,CF⊥OD1垂足为F,可得矩形CEOF,
    ∵CE=,
    ∴OF= CE=,
    ∴,
    ∵=,
    ∴,
    ∴,
    ∴;
    ②如图所示,当点D位于下半圆中点D2时,

    同理可求.
    ∴CD1=,CD2=7
    点睛:本题考查了圆周角定理的推论、勾股定理、矩形的性质等知识.利用分类讨论思想并合理构造辅助线是解题的关键.
    24、(1)观测点到航线的距离为3km(2)该轮船航行的速度约为40.6km/h
    【解析】试题分析:(1)设AB与l交于点O,利用∠DAO=60°,利用∠DAO的余弦求出OA长,从而求得OB长,继而求得BE长即可;
    (2)先计算出DE=EF+DF=求出DE=5,再由进而由tan∠CBE=求出EC,即可求出CD的长,进而求出航行速度.
    试题解析:(1)设AB与l交于点O,

    在Rt△AOD中,
    ∵∠OAD=60°,AD=2(km),
    ∴OA==4(km),
    ∵AB=10(km),
    ∴OB=AB﹣OA=6(km),
    在Rt△BOE中,∠OBE=∠OAD=60°,
    ∴BE=OB•cos60°=3(km),
    答:观测点B到航线l的距离为3km;
    (2)∵∠OAD=60°,AD=2(km),∴OD=AD·tan60°=2 ,
    ∵∠BEO=90°,BO=6,BE=3,∴OE==3,
    ∴DE=OD+OE=5(km);
    CE=BE•tan∠CBE=3tan76°,
    ∴CD=CE﹣DE=3tan76°﹣5≈3.38(km),
    ∵5(min)= (h),∴v==12CD=12×3.38≈40.6(km/h),
    答:该轮船航行的速度约为40.6km/h.
    【点睛】本题主要考查了方向角问题以及利用锐角三角函数关系得出EC,DE,DO的长是解题关键.

    相关试卷

    [数学]2024年湖北省武汉市新洲区中考数学综合训练模拟试卷(一)(含解析): 这是一份[数学]2024年湖北省武汉市新洲区中考数学综合训练模拟试卷(一)(含解析),共26页。

    湖北省武汉市七一中学2022年中考试题猜想数学试卷含解析: 这是一份湖北省武汉市七一中学2022年中考试题猜想数学试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是,计算等内容,欢迎下载使用。

    湖北省武汉市江夏区第六中学2021-2022学年中考试题猜想数学试卷含解析: 这是一份湖北省武汉市江夏区第六中学2021-2022学年中考试题猜想数学试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,-4的绝对值是,下列运算中正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map