![湖南省武汉市常青第一校2022年中考数学四模试卷含解析01](http://img-preview.51jiaoxi.com/2/3/13531627/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖南省武汉市常青第一校2022年中考数学四模试卷含解析02](http://img-preview.51jiaoxi.com/2/3/13531627/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖南省武汉市常青第一校2022年中考数学四模试卷含解析03](http://img-preview.51jiaoxi.com/2/3/13531627/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
湖南省武汉市常青第一校2022年中考数学四模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.若55+55+55+55+55=25n,则n的值为( )
A.10 B.6 C.5 D.3
2.如图,是半圆的直径,点、是半圆的三等分点,弦.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为( )
A. B. C. D.
3.如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=( )
A.54° B.64° C.27° D.37°
4.如图,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分别过点B,C作BE⊥AG 于点E,CF⊥AG于点F,则AE-GF的值为( )
A.1 B. C. D.
5.如图,中,,,将绕点逆时针旋转得到,使得,延长交于点,则线段的长为( )
A.4 B.5 C.6 D.7
6.有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃的直径,且AB⊥CD.入口K 位于中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是( )
A.A→O→D B.C→A→O→ B C.D→O→C D.O→D→B→C
7.已知实数a<0,则下列事件中是必然事件的是( )
A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>0
8.下列图形中既是中心对称图形又是轴对称图形的是
A. B. C. D.
9.如图,以O为圆心的圆与直线交于A、B两点,若△OAB恰为等边三角形,则弧AB的长度为( )
A. B.π C.π D.π
10.如图,在△ABC中,点D、E分别在边AB、AC的反向延长线上,下面比例式中,不能判定ED//BC的是( )
A. B.
C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.函数中,自变量的取值范围是______
12.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为_______.
13.计算:=_________ .
14.如果一个矩形的面积是40,两条对角线夹角的正切值是,那么它的一条对角线长是__________.
15.因式分解:________.
16.若⊙O所在平面内一点P到⊙O的最大距离为6,最小距离为2,则⊙O的半径为_____.
17.下列说法正确的是_____.(请直接填写序号)
①“若a>b,则>.”是真命题.②六边形的内角和是其外角和的2倍.③函数y= 的自变量的取值范围是x≥﹣1.④三角形的中位线平行于第三边,并且等于第三边的一半.⑤正方形既是轴对称图形,又是中心对称图形.
三、解答题(共7小题,满分69分)
18.(10分)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)
19.(5分)先化简,再求值:,其中,.
20.(8分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是 .
21.(10分)如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.
(1)求该抛物线的解析式;
(2)阅读理解:
在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.
解决问题:
①若直线y=2x﹣1与直线y=mx+2互相垂直,则m的值是____;
②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.
22.(10分)列方程解应用题:某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元.从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?
23.(12分)已知抛物线y=x2+bx+c(b,c是常数)与x轴相交于A,B两点(A在B的左侧),与y轴交于点C.
(1)当A(﹣1,0),C(0,﹣3)时,求抛物线的解析式和顶点坐标;
(2)P(m,t)为抛物线上的一个动点.
①当点P关于原点的对称点P′落在直线BC上时,求m的值;
②当点P关于原点的对称点P′落在第一象限内,P′A2取得最小值时,求m的值及这个最小值.
24.(14分)如图,经过点C(0,﹣4)的抛物线()与x轴相交于A(﹣2,0),B两点.
(1)a 0, 0(填“>”或“<”);
(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;
(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.
【详解】
解:∵55+55+55+55+55=25n,
∴55×5=52n,
则56=52n,
解得:n=1.
故选D.
【点睛】
此题主要考查了幂的乘方运算,正确将原式变形是解题关键.
2、D
【解析】
连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OC∥BD且△BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案.
【详解】
解:如图,连接OC、OD、BD,
∵点C、D是半圆O的三等分点,
∴,
∴∠AOC=∠COD=∠DOB=60°,
∵OC=OD,
∴△COD是等边三角形,
∴OC=OD=CD,
∵,
∴,
∵OB=OD,
∴△BOD是等边三角形,则∠ODB=60°,
∴∠ODB=∠COD=60°,
∴OC∥BD,
∴,
∴S阴影=S扇形OBD,
S半圆O,
飞镖落在阴影区域的概率,
故选:D.
【点睛】
本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.
3、C
【解析】
由∠AOC=126°,可求得∠BOC的度数,然后由圆周角定理,求得∠CDB的度数.
【详解】
解:∵∠AOC=126°,
∴∠BOC=180°﹣∠AOC=54°,
∵∠CDB=∠BOC=27°
故选:C.
【点睛】
此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
4、D
【解析】
设AE=x,则AB=x,由矩形的性质得出∠BAD=∠D=90°,CD=AB,证明△ADG是等腰直角三角形,得出AG=AD=,同理得出CD=AB=x,CG=CD-DG=x -1,CG=GF,得出GF,即可得出结果.
【详解】
设AE=x,
∵四边形ABCD是矩形,
∴∠BAD=∠D=90°,CD=AB,
∵AG平分∠BAD,
∴∠DAG=45°,
∴△ADG是等腰直角三角形,
∴DG=AD=1,
∴AG=AD=,
同理:BE=AE=x, CD=AB=x,
∴CG=CD-DG=x -1,
同理: CG=GF,
∴FG= ,
∴AE-GF=x-(x-)=.
故选D.
【点睛】
本题考查了矩形的性质、等腰直角三角形的判定与性质,勾股定理;熟练掌握矩形的性质和等腰直角三角形的性质,并能进行推理计算是解决问题的关键.
5、B
【解析】
先利用已知证明,从而得出,求出BD的长度,最后利用求解即可.
【详解】
故选:B.
【点睛】
本题主要考查相似三角形的判定及性质,掌握相似三角形的性质是解题的关键.
6、B
【解析】
【分析】观察图象可知园丁与入口K的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.
【详解】A. A→O→D,园丁与入口的距离逐渐增大,逐渐减小,不符合;
B. C→A→O→ B,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;
C. D→O→C,园丁与入口的距离逐渐增大,不符合;
D. O→D→B→C,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,
故选B.
【点睛】本题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键.
7、B
【解析】
A、a+3<0是随机事件,故A错误;B、a﹣3<0是必然事件,故B正确;
C、3a>0是不可能事件,故C错误;D、a3>0是随机事件,故D错误;
故选B.
点睛:本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件指一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
8、B
【解析】
根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.
【详解】
A、是轴对称图形,不是中心对称图形,不符合题意;
B、是轴对称图形,也是中心对称图形,符合题意;
C、是轴对称图形,不是中心对称图形,不符合题意;
D、不是轴对称图形,是中心对称图形,不符合题意.
故选B.
9、C
【解析】
过点作,
∵,
∴,,
∴为等腰直角三角形,,
,
∵为等边三角形,
∴,
∴.
∴.故选C.
10、C
【解析】
根据平行线分线段成比例定理推理的逆定理,对各选项进行逐一判断即可.
【详解】
A. 当时,能判断;
B. 当时,能判断;
C. 当时,不能判断;
D. 当时,,能判断.
故选:C.
【点睛】
本题考查平行线分线段成比例定理推理的逆定理,根据定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.能根据定理判断线段是否为对应线段是解决此题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、x≠1
【解析】
解:∵有意义,
∴x-1≠0,
∴x≠1;
故答案是:x≠1.
12、64°
【解析】
解:∵∠A=52°,∴∠ABC+∠ACB=128°.∵BD和CE是△ABC的两条角平分线,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=64°.故答案为64°.
点睛:本题考查的是三角形内角和定理、角平分线的定义,掌握三角形内角和等于180°是解题的关键.
13、2
【解析】
利用平方差公式求解,即可求得答案.
【详解】
=()2-()2=5-3=2.
故答案为2.
【点睛】
此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用.
14、1.
【解析】
如图,作BH⊥AC于H.由四边形ABCD是矩形,推出OA=OC=OD=OB,设OA=OC=OD=OB=5a,由tan∠BOH,可得BH=4a,OH=3a,由题意:21a×4a=40,求出a即可解决问题.
【详解】
如图,作BH⊥AC于H.
∵四边形ABCD是矩形,∴OA=OC=OD=OB,设OA=OC=OD=OB=5a.
∵tan∠BOH,∴BH=4a,OH=3a,由题意:21a×4a=40,∴a=1,∴AC=1.
故答案为:1.
【点睛】
本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.
15、a(a+1)(a-1)
【解析】
先提公因式,再利用公式法进行因式分解即可.
【详解】
解:a(a+1)(a-1)
故答案为:a(a+1)(a-1)
【点睛】
本题考查了因式分解,先提公因式再利用平方差公式是解题的关键.
16、2或1
【解析】
点P可能在圆内.也可能在圆外,因而分两种情况进行讨论.
【详解】
解:当这点在圆外时,则这个圆的半径是(6-2)÷2=2;
当点在圆内时,则这个圆的半径是(6+2)÷2=1.
故答案为2或1.
【点睛】
此题主要考查点与圆的位置关系,解题的关键是注意此题应分为两种情况来解决.
17、②④⑤
【解析】
根据不等式的性质可确定①的对错,根据多边形的内外角和可确定②的对错,根据函数自变量的取值范围可确定③的对错,根据三角形中位线的性质可确定④的对错,根据正方形的性质可确定⑤的对错.
【详解】
①“若a>b,当c<0时,则<,故①是假命题;
②六边形的内角和是其外角和的2倍,根据②真命题;
③函数y=的自变量的取值范围是x≥﹣1且x≠0,故③是假命题;
④三角形的中位线平行于第三边,并且等于第三边的一半,故④是真命题;
⑤正方形既是轴对称图形,又是中心对称图形,故⑤是真命题;
故答案为②④⑤
【点睛】
本题考查了不等式的性质、多边形的内外角和、函数自变量的取值范围、三角形中位线的性质、正方形的性质,解答本题的关键是熟练掌握各知识点.
三、解答题(共7小题,满分69分)
18、至少涨到每股6.1元时才能卖出.
【解析】
根据关系式:总售价-两次交易费≥总成本+1000列出不等式求解即可.
【详解】
解:设涨到每股x元时卖出,
根据题意得1000x-(5000+1000x)×0.5%≥5000+1000,
解这个不等式得x≥,
即x≥6.1.
答:至少涨到每股6.1元时才能卖出.
【点睛】
本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价-两次交易费≥总成本+1000”列出不等关系式.
19、9
【解析】
根据完全平方公式、平方差公式、单项式乘多项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.
【详解】
当,时,
原式
【点睛】
本题考查整式的化简求值,解答本题的关键是明确整式化简求值的方法.
20、(1)证明见解析;(2)1.
【解析】
【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;
(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.
【详解】(1)∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠COD=90°.
∵CE∥OD,DE∥OC,
∴四边形OCED是平行四边形,
又∠COD=90°,
∴平行四边形OCED是矩形;
(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.
∵四边形ABCD是菱形,
∴AC=2OC=1,BD=2OD=2,
∴菱形ABCD的面积为:AC•BD=×1×2=1,
故答案为1.
【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.
21、(1)y=﹣x2+x+1;(2)①-;②点P的坐标(6,﹣14)(4,﹣5);(3).
【解析】
(1)根据待定系数法,可得函数解析式;
(2)根据垂线间的关系,可得PA,PB的解析式,根据解方程组,可得P点坐标;
(3)根据垂直于x的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值
【详解】
解:(1)将A,B点坐标代入,得
,
解得,
抛物线的解析式为y=;
(2)①由直线y=2x﹣1与直线y=mx+2互相垂直,得
2m=﹣1,
即m=﹣;
故答案为﹣;
②AB的解析式为
当PA⊥AB时,PA的解析式为y=﹣2x﹣2,
联立PA与抛物线,得,
解得(舍),,
即P(6,﹣14);
当PB⊥AB时,PB的解析式为y=﹣2x+3,
联立PB与抛物线,得,
解得(舍),
即P(4,﹣5),
综上所述:△PAB是以AB为直角边的直角三角形,点P的坐标(6,﹣14)(4,﹣5);
(3)如图:
,
∵M(t,﹣t2+t+1),Q(t, t+),
∴MQ=﹣t2+
S△MAB=MQ|xB﹣xA|
=(﹣t2+)×2
=﹣t2+,
当t=0时,S取最大值,即M(0,1).
由勾股定理,得
AB==,
设M到AB的距离为h,由三角形的面积,得
h==.
点M到直线AB的距离的最大值是.
【点睛】
本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键
22、从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.
【解析】
设年平均增长率为x,根据:2016年投入资金×(1+增长率)2=2018年投入资金,列出方程求解可得.
【详解】
解:设该地投入异地安置资金的年平均增长率为x.
根据题意得:1280(1+x)2=1280+1600.
解得x1=0.5=50%,x2=-2.5(舍去),
答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%.
【点睛】
本题考查了一元二次方程的应用,由题意准确找出相等关系并据此列出方程是解题的关键.
23、(1)抛物线的解析式为y=x3﹣3x﹣1,顶点坐标为(1,﹣4);(3)①m=;②P′A3取得最小值时,m的值是,这个最小值是.
【解析】
(1)根据A(﹣1,3),C(3,﹣1)在抛物线y=x3+bx+c(b,c是常数)的图象上,可以求得b、c的值;
(3)①根据题意可以得到点P′的坐标,再根据函数解析式可以求得点B的坐标,进而求得直线BC的解析式,再根据点P′落在直线BC上,从而可以求得m的值;
②根据题意可以表示出P′A3,从而可以求得当P′A3取得最小值时,m的值及这个最小值.
【详解】
解:(1)∵抛物线y=x3+bx+c(b,c是常数)与x轴相交于A,B两点,与y轴交于点C,A(﹣1,3),C(3,﹣1),∴,解得:,∴该抛物线的解析式为y=x3﹣3x﹣1.
∵y=x3﹣3x﹣1=(x﹣1)3﹣4,∴抛物线的顶点坐标为(1,﹣4);
(3)①由P(m,t)在抛物线上可得:t=m3﹣3m﹣1.
∵点P和P′关于原点对称,∴P′(﹣m,﹣t),当y=3时,3=x3﹣3x﹣1,解得:x1=﹣1,x3=1,由已知可得:点B(1,3).
∵点B(1,3),点C(3,﹣1),设直线BC对应的函数解析式为:y=kx+d,,解得:,∴直线BC的直线解析式为y=x﹣1.
∵点P′落在直线BC上,∴﹣t=﹣m﹣1,即t=m+1,∴m3﹣3m﹣1=m+1,解得:m=;
②由题意可知,点P′(﹣m,﹣t)在第一象限,∴﹣m>3,﹣t>3,∴m<3,t<3.
∵二次函数的最小值是﹣4,∴﹣4≤t<3.
∵点P(m,t)在抛物线上,∴t=m3﹣3m﹣1,∴t+1=m3﹣3m,过点P′作P′H⊥x轴,H为垂足,有H(﹣m,3).
又∵A(﹣1,3),则P′H3=t3,AH3=(﹣m+1)3.在Rt△P′AH中,P′A3=AH3+P′H3,∴P′A3=(﹣m+1)3+t3=m3﹣3m+1+t3=t3+t+4=(t+)3+,∴当t=﹣时,P′A3有最小值,此时P′A3=,∴=m3﹣3m﹣1,解得:m=.
∵m<3,∴m=,即P′A3取得最小值时,m的值是,这个最小值是.
【点睛】
本题是二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.
24、(1)>,>;(2);(3)E(4,﹣4)或(,4)或(,4).
【解析】
(1)由抛物线开口向上,且与x轴有两个交点,即可做出判断;
(2)根据抛物线的对称轴及A的坐标,确定出B的坐标,将A,B,C三点坐标代入求出a,b,c的值,即可确定出抛物线解析式;
(3)存在,分两种情况讨论:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示;
(ii)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,可得AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,分别求出E坐标即可.
【详解】
(1)a>0,>0;
(2)∵直线x=2是对称轴,A(﹣2,0),
∴B(6,0),
∵点C(0,﹣4),
将A,B,C的坐标分别代入,解得:,,,
∴抛物线的函数表达式为;
(3)存在,理由为:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示,
则四边形ACEF即为满足条件的平行四边形,
∵抛物线关于直线x=2对称,
∴由抛物线的对称性可知,E点的横坐标为4,
又∵OC=4,∴E的纵坐标为﹣4,
∴存在点E(4,﹣4);
(ii)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,
过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,
∴AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,
∵AC∥E′F′,
∴∠CAO=∠E′F′G,
又∵∠COA=∠E′GF′=90°,AC=E′F′,
∴△CAO≌△E′F′G,
∴E′G=CO=4,
∴点E′的纵坐标是4,
∴,解得:,,
∴点E′的坐标为(,4),同理可得点E″的坐标为(,4).
湖北省武汉市江汉区常青第一校2022年中考五模数学试题含解析: 这是一份湖北省武汉市江汉区常青第一校2022年中考五模数学试题含解析,共22页。
2022年上海华亭校中考数学四模试卷含解析: 这是一份2022年上海华亭校中考数学四模试卷含解析,共23页。试卷主要包含了下列四个实数中是无理数的是,的倒数的绝对值是等内容,欢迎下载使用。
2022年湖南省武汉市常青第一校中考试题猜想数学试卷含解析: 这是一份2022年湖南省武汉市常青第一校中考试题猜想数学试卷含解析,共20页。试卷主要包含了不等式组的正整数解的个数是,如图,在平面直角坐标系中,A等内容,欢迎下载使用。