2022年河南省罗山县联考中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则∠ACB等于( )
A.∠EDB B.∠BED C.∠EBD D.2∠ABF
2.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )
A. B. C. D.
3.关于x的方程3x+2a=x﹣5的解是负数,则a的取值范围是( )
A.a< B.a> C.a<﹣ D.a>﹣
4.如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=( )
A.54° B.64° C.27° D.37°
5.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为千米/小时,依据题意列方程正确的是( )
A. B. C. D.
6.下列等式从左到右的变形,属于因式分解的是
A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)
C.4x2+8x-4=4x D.4my-2=2(2my-1)
7.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是( )
A. B.
C. D.
8.从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数y=图象上的概率是( )
A. B. C. D.
9.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为( )
A. B.2 C. D.
10.若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于( )
A.2 B.﹣2 C.4 D.﹣4
二、填空题(共7小题,每小题3分,满分21分)
11.计算:____________
12.如图,△ABC的面积为6,平行于BC的两条直线分别交AB,AC于点D,E,F,G.若AD=DF=FB,则四边形DFGE的面积为_____.
13.不等式组的最小整数解是_____.
14.如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点A(,-1),则不等式mx+2<kx+b<0的解集为____.
15.有一个正六面体,六个面上分别写有1~6这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是____.
16.下列图形是用火柴棒摆成的“金鱼”,如果第1个图形需要8根火柴,则第2个图形需要14根火柴,第根图形需要____________根火柴.
17.如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_____.
三、解答题(共7小题,满分69分)
18.(10分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:
补全条形统计图;求扇形统计图扇形D的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?
19.(5分)如图,已知三角形ABC的边AB是0的切线,切点为B.AC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E,
(1)求证:CB平分∠ACE;
(2)若BE=3,CE=4,求O的半径.
20.(8分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:
销售单价(元)
x
销售量y(件)
销售玩具获得利润w(元)
(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
21.(10分)如图,已知抛物线过点A(4,0),B(﹣2,0),C(0,﹣4).
(1)求抛物线的解析式;
(2)在图甲中,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标;
(3)在图乙中,点C和点C1关于抛物线的对称轴对称,点P在抛物线上,且∠PAB=∠CAC1,求点P的横坐标.
22.(10分)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
(1)求证:CD是⊙O的切线;
(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.
23.(12分)《九章算术》中有这样一道题,原文如下:
今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为;若甲把其的钱给乙,则乙的钱数也能为,问甲、乙各有多少钱?
请解答上述问题.
24.(14分)“不出城郭而获山水之怡,身居闹市而有林泉之致”,合肥市某区不断推进“园林城市”建设,今春种植了四类花苗,园林部门从种植的这批花苗中随机抽取了2000株,将四类花苗的种植株数绘制成扇形统计图,将四类花苗的成活株数绘制成条形统图.经统计这批2000株的花苗总成活率为90%,其中玉兰和月季的成活率较高,根据图表中的信息解答下列问题:扇形统计图中玉兰所对的圆心角为 ,并补全条形统计图;该区今年共种植月季8000株,成活了约 株;园林部门决定明年从这四类花苗中选两类种植,请用列表法或画树状图求恰好选到成活率较高的两类花苗的概率.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
根据全等三角形的判定与性质,可得∠ACB=∠DBE的关系,根据三角形外角的性质,可得答案.
【详解】
在△ABC和△DEB中,,所以△ABC△BDE(SSS),所以∠ACB=∠DBE.故本题正确答案为C.
【点睛】
.
本题主要考查全等三角形的判定与性质,熟悉掌握是关键.
2、C
【解析】
分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.
详解:将三个小区分别记为A、B、C,
列表如下:
A
B
C
A
(A,A)
(B,A)
(C,A)
B
(A,B)
(B,B)
(C,B)
C
(A,C)
(B,C)
(C,C)
由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,
所以两个组恰好抽到同一个小区的概率为.
故选:C.
点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
3、D
【解析】
先解方程求出x,再根据解是负数得到关于a的不等式,解不等式即可得.
【详解】
解方程3x+2a=x﹣5得
x=,
因为方程的解为负数,
所以<0,
解得:a>﹣.
【点睛】
本题考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式时,要注意的是:若在不等式左右两边同时乘以或除以同一个负数时,不等号方向要改变.
4、C
【解析】
由∠AOC=126°,可求得∠BOC的度数,然后由圆周角定理,求得∠CDB的度数.
【详解】
解:∵∠AOC=126°,
∴∠BOC=180°﹣∠AOC=54°,
∵∠CDB=∠BOC=27°
故选:C.
【点睛】
此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
5、C
【解析】
由实际问题抽象出方程(行程问题).
【分析】∵甲车的速度为千米/小时,则乙甲车的速度为千米/小时
∴甲车行驶30千米的时间为,乙车行驶40千米的时间为,
∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得.故选C.
6、D
【解析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A、是整式的乘法,故A不符合题意;
B、没把一个多项式转化成几个整式积的形式,故B不符合题意;
C、没把一个多项式转化成几个整式积的形式,故C不符合题意;
D、把一个多项式转化成几个整式积的形式,故D符合题意;
故选D.
【点睛】
本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.
7、C
【解析】
分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.
详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.
B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.
D、∵sin∠ABE=,
∵∠EBD=∠EDB
∴BE=DE
∴sin∠ABE=.
由已知不能得到△ABE∽△CBD.故选C.
点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.
8、B
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(m,n)恰好在反比例函数y=图象上的情况,再利用概率公式即可求得答案.
【详解】
解:画树状图得:
∵共有12种等可能的结果,点(m,n)恰好在反比例函数y=图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),
∴点(m,n)在函数y=图象上的概率是:.
故选B.
【点睛】
此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
9、D
【解析】
由m≤x≤n和mn<0知m<0,n>0,据此得最小值为1m为负数,最大值为1n为正数.将最大值为1n分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.
【详解】
解:二次函数y=﹣(x﹣1)1+5的大致图象如下:
.
①当m≤0≤x≤n<1时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,
解得:m=﹣1.
当x=n时y取最大值,即1n=﹣(n﹣1)1+5, 解得:n=1或n=﹣1(均不合题意,舍去);
②当m≤0≤x≤1≤n时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,
解得:m=﹣1.
当x=1时y取最大值,即1n=﹣(1﹣1)1+5, 解得:n=,
或x=n时y取最小值,x=1时y取最大值,
1m=-(n-1)1+5,n=,
∴m=,
∵m<0,
∴此种情形不合题意,
所以m+n=﹣1+=.
10、B
【解析】
利用待定系数法求出m,再结合函数的性质即可解决问题.
【详解】
解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),
∴m2=4,
∴m=±2,
∵y的值随x值的增大而减小,
∴m<0,
∴m=﹣2,
故选:B.
【点睛】
本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
二、填空题(共7小题,每小题3分,满分21分)
11、y
【解析】
根据幂的乘方和同底数幂相除的法则即可解答.
【详解】
【点睛】
本题考查了幂的乘方和同底数幂相除,熟练掌握:幂的乘方,底数不变,指数相乘的法则及同底数幂相除,底数不变,指数相减是关键.
12、1.
【解析】
先根据题意可证得△ABC∽△ADE,△ABC∽△AFG,再根据△ABC的面积为6分别求出△ADE与△AFG的面积,则四边形DFGE的面积=S△AFG-S△ADE.
【详解】
解:∵DE∥BC,,
∴△ADE∽△ABC,
∵AD=DF=FB,
∴=()1,即=()1,∴S△ADE=;
∵FG∥BC,∴△AFG∽△ABC,
=()1,即=()1,∴S△AFG=;
∴S四边形DFGE= S△AFG- S△ADE=-=1.故答案为:1.
【点睛】
本题考查了相似三角形的性质与应用,解题的关键是熟练的掌握相似三角形的性质与应用.
13、-1
【解析】
分析:先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.
详解: .
∵解不等式①得:x>-3,
解不等式②得:x≤1,
∴不等式组的解集为-3<x≤1,
∴不等式组的最小整数解是-1,
故答案为:-1.
点睛:本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.
14、﹣4<x<﹣
【解析】
根据函数的图像,可知不等式mx+2<kx+b<0的解集就是y=mx+2在函数y=kx+b的下面,且它们的值小于0的解集是﹣4<x<﹣.
故答案为﹣4<x<﹣.
15、
【解析】
∵投掷这个正六面体一次,向上的一面有6种情况,向上一面的数字是2的倍数或3的倍数的有2、3、4、6共4种情况,
∴其概率是=.
【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
16、
【解析】
根据图形可得每增加一个金鱼就增加6根火柴棒即可解答.
【详解】
第一个图中有8根火柴棒组成,
第二个图中有8+6个火柴棒组成,
第三个图中有8+2×6个火柴组成,
……
∴组成n个系列正方形形的火柴棒的根数是8+6(n-1)=6n+2.
故答案为6n+2
【点睛】
本题考查数字规律问题,通过归纳与总结,得到其中的规律是解题关键.
17、或10
【解析】
试题分析:根据题意,可分为E点在DC上和E在DC的延长线上,两种情况求解即可:
如图①,当点E在DC上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=2,设FE=x,则FE=x,QE=4-x,在Rt△EQF中,(4-x)2+22=x2,所以x=.(2)如图②,当,所以FQ=点E在DG的延长线上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=8,设DE=x,则FE=x,QE=x-4,在Rt△EQF中,(x-4)2+82=x2,所以x=10,综上所述,DE=或10.
三、解答题(共7小题,满分69分)
18、(1)补图见解析;(2)27°;(3)1800名
【解析】
(1)根据A类的人数是10,所占的百分比是25%即可求得总人数,然后根据百分比的意义求得B类的人数;
(2)用360°乘以对应的比例即可求解;
(3)用总人数乘以对应的百分比即可求解.
【详解】
(1)抽取的总人数是:10÷25%=40(人),
在B类的人数是:40×30%=12(人).
;
(2)扇形统计图扇形D的圆心角的度数是:360×=27°;
(3)能在1.5小时内完成家庭作业的人数是:2000×(25%+30%+35%)=1800(人).
考点:条形统计图、扇形统计图.
19、(1)证明见解析;(2).
【解析】
试题分析:(1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.
(2)如图2,连接BD通过△DBC∽△CBE,得到比例式,列方程可得结果.
(1)证明:如图1,连接OB,
∵AB是⊙0的切线,
∴OB⊥AB,
∵CE丄AB,
∴OB∥CE,
∴∠1=∠3,
∵OB=OC,
∴∠1=∠2,
∴∠2=∠3,
∴CB平分∠ACE;
(2)如图2,连接BD,
∵CE丄AB,
∴∠E=90°,
∴BC===5,
∵CD是⊙O的直径,
∴∠DBC=90°,
∴∠E=∠DBC,
∴△DBC∽△CBE,
∴,
∴BC2=CD•CE,
∴CD==,
∴OC==,
∴⊙O的半径=.
考点:切线的性质.
20、 (1) 1000﹣x,﹣10x2+1300x﹣1;(2)50元或80元;(3)8640元.
【解析】
(1)由销售单价每涨1元,就会少售出10件玩具得
销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.
(2)令﹣10x2+1300x﹣1=10000,求出x的值即可;
(3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣1转化成y=﹣10(x﹣65)2+12250,结合x的取值范围,求出最大利润.
【详解】
解:(1)销售量y=600﹣(x﹣40)x=1000﹣x,
销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.
故答案为: 1000﹣x,﹣10x2+1300x﹣1.
(2)﹣10x2+1300x﹣1=10000
解之得:x1=50,x2=80
答:玩具销售单价为50元或80元时,可获得10000元销售利润.
(3)根据题意得,
解得:44≤x≤46 .
w=﹣10x2+1300x﹣1=﹣10(x﹣65)2+12250
∵a=﹣10<0,对称轴x=65,
∴当44≤x≤46时,y随x增大而增大.
∴当x=46时,W最大值=8640(元).
答:商场销售该品牌玩具获得的最大利润为8640元.
21、 (1)y=x2-x-4(2)点M的坐标为(2,-4)(3)-或-
【解析】
【分析】(1)设交点式y=a(x+2)(x-4),然后把C点坐标代入求出a即可得到抛物线解析式;
(2) 连接OM,设点M的坐标为.由题意知,当四边形OAMC面积最大时,阴影部分的面积最小.S四边形OAMC=S△OAM+S△OCM-(m-2)2+12. 当m=2时,四边形OAMC面积最大,此时阴影部分面积最小;
(3) 抛物线的对称轴为直线x=1,点C与点C1关于抛物线的对称轴对称,所以C1(2,-4).连接CC1,过C1作C1D⊥AC于D,则CC1=2.先求AC=4,CD=C1D=,AD=4-=3;设点P ,过P作PQ垂直于x轴,垂足为Q. 证△PAQ∽△C1AD,得,即,解得解得n=-,或n=-,或n=4(舍去).
【详解】(1)抛物线的解析式为y= (x-4)(x+2)=x2-x-4.
(2)连接OM,设点M的坐标为.
由题意知,当四边形OAMC面积最大时,阴影部分的面积最小.
S四边形OAMC=S△OAM+S△OCM
=× 4m+× 4
=-m2+4m+8=-(m-2)2+12.
当m=2时,四边形OAMC面积最大,此时阴影部分面积最小,所以点M的坐标为(2,-4).
(3)∵抛物线的对称轴为直线x=1,点C与点C1关于抛物线的对称轴对称,所以C1(2,-4).
连接CC1,过C1作C1D⊥AC于D,则CC1=2.
∵OA=OC,∠AOC=90°,∠CDC1=90°,
∴AC=4,CD=C1D=,AD=4-=3,
设点P ,过P作PQ垂直于x轴,垂足为Q.
∵∠PAB=∠CAC1,∠AQP=∠ADC1,
∴△PAQ∽△C1AD,
∴,
即 ,化简得 =(8-2n),
即3n2-6n-24=8-2n,或3n2-6n-24=-(8-2n),
解得n=-,或n=-,或n=4(舍去),
∴点P的横坐标为-或-.
【点睛】本题考核知识点:二次函数综合运用. 解题关键点:熟记二次函数的性质,数形结合,由所求分析出必知条件.
22、(1)证明见解析;(2).
【解析】
试题分析:连接OD.根据圆周角定理得到∠ADO+∠ODB=90°,
而∠CDA=∠CBD,∠CBD=∠BDO.于是∠ADO+∠CDA=90°,可以证明是切线.
根据已知条件得到由相似三角形的性质得到 求得 由切线的性质得到根据勾股定理列方程即可得到结论.
试题解析:(1)连接OD.
∵OB=OD,
∴∠OBD=∠BDO.
∵∠CDA=∠CBD,
∴∠CDA=∠ODB.
又∵AB是⊙O的直径,∴∠ADB=90°,
∴∠ADO+∠ODB=90°,
∴∠ADO+∠CDA=90°,即∠CDO=90°,
∴OD⊥CD.
∵OD是⊙O的半径,
∴CD是⊙O的切线;
(2)∵∠C=∠C,∠CDA=∠CBD,∴△CDA∽△CBD,
BC=6,∴CD=4.
∵CE,BE是⊙O的切线,
∴BE=DE,BE⊥BC,
∴BE2+BC2=EC2,
即BE2+62=(4+BE)2,
解得BE=.
23、甲有钱,乙有钱.
【解析】
设甲有钱x,乙有钱y,根据相等关系:甲的钱数+乙钱数的一半=50,甲的钱数的三分之二+乙的钱数=50列出二元一次方程组求解即可.
【详解】
解:设甲有钱,乙有钱.
由题意得: ,
解方程组得: ,
答:甲有钱,乙有钱.
【点睛】
本题考查了二元一次方程组的应用,读懂题意正确的找出两个相等关系是解决此题的关键.
24、 (1)72°,见解析;(2)7280;(3).
【解析】
(1)根据题意列式计算,补全条形统计图即可;
(2)根据题意列式计算即可;
(3)画树状图得出所有等可能的情况数,找出选到成活率较高的两类树苗的情况数,即可求出所求的概率.
【详解】
(1)扇形统计图中玉兰所对的圆心角为360°×(1-40%-15%-25%)=72°
月季的株数为2000×90%-380-422-270=728(株),
补全条形统计图如图所示:
(2)月季的成活率为
所以月季成活株数为8000×91%=7280(株).
故答案为:7280.
(3)由题意知,成活率较高的两类花苗是玉兰和月季,玉兰、月季、桂花、腊梅分别用A、B、C、D表示,画树状图如下:
所有等可能的情况有12种,其中恰好选到成活率较高的两类花苗有2种.
∴P(恰好选到成活率较高的两类花苗)
【点睛】
此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键.
河南省信阳罗山县联考2022年中考猜题数学试卷含解析: 这是一份河南省信阳罗山县联考2022年中考猜题数学试卷含解析,共19页。
河南省罗山县联考2022年中考数学模试卷含解析: 这是一份河南省罗山县联考2022年中考数学模试卷含解析,共17页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
河南省安阳内黄县联考2022年中考联考数学试卷含解析: 这是一份河南省安阳内黄县联考2022年中考联考数学试卷含解析,共24页。试卷主要包含了在平面直角坐标系中,点P,如图,已知,用尺规作图作等内容,欢迎下载使用。