


2022届河南省镇平县联考中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.下列各式:①3+3=6;②=1;③+==2;④=2;其中错误的有( ).
A.3个 B.2个 C.1个 D.0个
2.下列几何体中,其三视图都是全等图形的是( )
A.圆柱 B.圆锥 C.三棱锥 D.球
3.济南市某天的气温:-5~8℃,则当天最高与最低的温差为( )
A.13 B.3 C.-13 D.-3
4.为喜迎党的十九大召开,乐陵某中学剪纸社团进行了剪纸大赛,下列作品既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
5.如图所示,在长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是( )
A.28cm2 B.27cm2 C.21cm2 D.20cm2
6.二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为( )
A. B. C. D.
7.如图,不等式组的解集在数轴上表示正确的是( )
A. B.
C. D.
8.一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是( )
A.30厘米、45厘米; B.40厘米、80厘米; C.80厘米、120厘米; D.90厘米、120厘米
9.一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.下列叙述错误的是( )
A.AB两地相距1000千米
B.两车出发后3小时相遇
C.动车的速度为
D.普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶千米到达A地
10.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )
A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-2
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,中,,则 __________.
12.如图,已知⊙O1与⊙O2相交于A、B两点,延长连心线O1O2交⊙O2于点P,联结PA、PB,若∠APB=60°,AP=6,那么⊙O2的半径等于________.
13.如图,已知O为△ABC内一点,点D、E分别在边AB和AC上,且,DE∥BC,设、,那么______(用、表示).
14.如图,在□ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动.点P运动到F点时停止运动,点Q也同时停止运动.当点P运动_____秒时,以点P、Q、E、F为顶点的四边形是平行四边形.
15.计算: 7+(-5)=______.
16.将多项式xy2﹣4xy+4y因式分解:_____.
三、解答题(共8题,共72分)
17.(8分)如图,在平行四边形ABCD中,过点A作AE⊥DC,垂足为点E,连接BE,点F为BE上一点,连接AF,∠AFE=∠D.
(1)求证:∠BAF=∠CBE;
(2)若AD=5,AB=8,sinD=.求证:AF=BF.
18.(8分)计算:(﹣2018)0﹣4sin45°+﹣2﹣1.
19.(8分)已知矩形ABCD,AB=4,BC=3,以AB为直径的半圆O在矩形ABCD的外部(如图),将半圆O绕点A顺时针旋转α度(0°≤α≤180°)
(1)半圆的直径落在对角线AC上时,如图所示,半圆与AB的交点为M,求AM的长;
(2)半圆与直线CD相切时,切点为N,与线段AD的交点为P,如图所示,求劣弧AP的长;
(3)在旋转过程中,半圆弧与直线CD只有一个交点时,设此交点与点C的距离为d,直接写出d的取值范围.
20.(8分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,连接EF.
(1)如图,点D在线段CB上时,
①求证:△AEF≌△ADC;
②连接BE,设线段CD=x,BE=y,求y2﹣x2的值;
(2)当∠DAB=15°时,求△ADE的面积.
21.(8分)有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.随机抽取一张卡片,求抽到数字“﹣1”的概率;随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.
22.(10分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中男生、女生的人数相同,利用所得数据绘制如下统计图表:
组别
身高
A
x<160
B
160≤x<165
C
165≤x<170
D
170≤x<175
E
x≥175
根据图表提供的信息,回答下列问题:
(1)样本中,男生的身高众数在 组,中位数在 组;
(2)样本中,女生身高在E组的有 人,E组所在扇形的圆心角度数为 ;
(3)已知该校共有男生600人,女生480人,请估让身高在165≤x<175之间的学生约有多少人?
23.(12分)先化简,再求值:(x+1y)1﹣(1y+x)(1y﹣x)﹣1x1,其中x=+1,y=﹣1.
24.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.
(1)求购进A、B两种纪念品每件各需多少元?
(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?
(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
3+3=6,错误,无法计算;② =1,错误;③+==2不能计算;④=2,正确.
故选A.
2、D
【解析】
分析: 任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,其他的几何体的视图都有不同的.
详解:圆柱,圆锥,三棱锥,球中,
三视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,
故选D.
点睛: 本题考查简单几何体的三视图,本题解题的关键是看出各个图形的在任意方向上的视图.
3、A
【解析】
由题意可知,当天最高温与最低温的温差为8-(-5)=13℃,故选A.
4、C
【解析】
根据轴对称和中心对称的定义去判断即可得出正确答案.
【详解】
解:A、是轴对称图形,不是中心对称图形,故此选项错误;
B、不是轴对称图形,也不是中心对称图形,故此选项错误;
C、是轴对称图形,也是中心对称图形,故此选项正确;
D、是轴对称图形,不是中心对称图形,故此选项错误.
故选:C.
【点睛】
本题考查的是轴对称和中心对称的知识点,解题关键在于对知识点的理解和把握.
5、B
【解析】
根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得.
【详解】
解:依题意,在矩形ABDC中截取矩形ABFE,
则矩形ABDC∽矩形FDCE,
则
设DF=xcm,得到:
解得:x=4.5,
则剩下的矩形面积是:4.5×6=17cm1.
【点睛】
本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.
6、D
【解析】
根据二次函数图象开口向上得到a>0,再根据对称轴确定出b,根据二次函数图形与轴的交点个数,判断的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.
【详解】
∵二次函数图象开口方向向上,
∴a>0,
∵对称轴为直线
∴b<0,
二次函数图形与轴有两个交点,则>0,
∵当x=1时y=a+b+c<0,
∴的图象经过第二四象限,且与y轴的正半轴相交,
反比例函数图象在第二、四象限,
只有D选项图象符合.
故选:D.
【点睛】
考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.
7、B
【解析】
首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.
【详解】
解:解第一个不等式得:x>-1;
解第二个不等式得:x≤1,
在数轴上表示,
故选B.
【点睛】
此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时 “≥” ,“≤” 要用实心圆点表示; “ <“ >” 要用空心圆点表示.
8、C
【解析】当60cm的木条与20cm是对应边时,那么另两条边的木条长度分别为90cm与120cm;
当60cm的木条与30cm是对应边时,那么另两条边的木条长度分别为40cm与80cm;
当60cm的木条与40cm是对应边时,那么另两条边的木条长度分别为30cm与45cm;
所以A、B、D选项不符合题意,C选项符合题意,
故选C.
9、C
【解析】
可以用物理的思维来解决这道题.
【详解】
未出发时,x=0,y=1000,所以两地相距1000千米,所以A选项正确;y=0时两车相遇,x=3,所以B选项正确;设动车速度为V1,普车速度为V2,则3(V1+ V2)=1000,所以C选项错误;D选项正确.
【点睛】
理解转折点的含义是解决这一类题的关键.
10、A
【解析】
试题分析:根据函数图象右移减、左移加,上移加、下移减,可得答案.
解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 y=(x﹣1)2+2,
故选A.
考点:二次函数图象与几何变换.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、17
【解析】
∵Rt△ABC中,∠C=90°,∴tanA= ,
∵,∴AC=8,
∴AB= =17,
故答案为17.
12、2
【解析】
由题意得出△ABP为等边三角形,在Rt△ACO2中,AO2=即可.
【详解】
由题意易知:PO1⊥AB,∵∠APB=60°∴△ABP为等边三角形,AC=BC=3
∴圆心角∠AO2O1=60° ∴在Rt△ACO2中,AO2==2.
故答案为2.
【点睛】
本题考查的知识点是圆的性质,解题的关键是熟练的掌握圆的性质.
13、
【解析】
根据,DE∥BC,结合平行线分线段成比例来求.
【详解】
∵,DE∥BC,
∴,
∴ = =.
∵,
∴
∴.
故答案为:.
【点睛】
本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.
14、3或1
【解析】
由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠ADB=∠CBD,
∵∠FBM=∠CBM,
∴∠FBD=∠FDB,
∴FB=FD=12cm,
∵AF=6cm,
∴AD=18cm,
∵点E是BC的中点,
∴CE=BC=AD=9cm,
要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,
设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,
根据题意得:6-t=9-2t或6-t=2t-9,
解得:t=3或t=1.
故答案为3或1.
【点睛】
本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.
15、2
【解析】
根据有理数的加法法则计算即可.
【详解】
.
故答案为:2.
【点睛】
本题考查有理数的加法计算,熟练掌握加法法则是关键.
16、y(xy﹣4x+4)
【解析】
直接提公因式y即可解答.
【详解】
xy2﹣4xy+4y=y(xy﹣4x+4).
故答案为:y(xy﹣4x+4).
【点睛】
本题考查了因式分解——提公因式法,确定多项式xy2﹣4xy+4y的公因式为y是解决问题的关键.
三、解答题(共8题,共72分)
17、(1)见解析;(2)2.
【解析】
(1)根据相似三角形的判定,易证△ABF∽△BEC,从而可以证明∠BAF=∠CBE成立;
(2)根据锐角三角函数和三角形的相似可以求得AF的长
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,AD=BC,
∴∠D+∠C=180°,∠ABF=∠BEC,
∵∠AFB+∠AFE=180°,∠AFE=∠D,
∴∠C=∠AFB,
∴△ABF∽△BEC,
∴∠BAF=∠CBE;
(2)∵AE⊥DC,AD=5,AB=8,sin∠D=,
∴AE=4,DE=3
∴EC=5
∵AE⊥DC,AB∥DC,
∴∠AED=∠BAE=90°,
在Rt△ABE中,根据勾股定理得:BE=
∵BC=AD=5,
由(1)得:△ABF∽△BEC,
∴ ==
即 ==
解得:AF=BF=2
【点睛】
本题考查相似三角形的判定与性质、平行四边形的性质、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答
18、.
【解析】
根据零指数幂和特殊角的三角函数值进行计算
【详解】
解:原式=1﹣4×+2﹣
=1﹣2+2﹣
=
【点睛】
本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.
19、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.
【解析】
(2)连接B′M,则∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的长度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根据相似三角形的性质可求出AM的长度;
(2)连接OP、ON,过点O作OG⊥AD于点G,则四边形DGON为矩形,进而可得出DG、AG的长度,在Rt△AGO中,由AO=2、AG=2可得出∠OAG=60°,进而可得出△AOP为等边三角形,再利用弧长公式即可求出劣弧AP的长;
(3)由(2)可知:△AOP为等边三角形,根据等边三角形的性质可求出OG、DN的长度,进而可得出CN的长度,画出点B′在直线CD上的图形,在Rt△AB′D中(点B′在点D左边),利用勾股定理可求出B′D的长度进而可得出CB′的长度,再结合图形即可得出:半圆弧与直线CD只有一个交点时d的取值范围.
【详解】
(2)在图2中,连接B′M,则∠B′MA=90°.
在Rt△ABC中,AB=4,BC=3,
∴AC=2.
∵∠B=∠B′MA=90°,∠BCA=∠MAB′,
∴△ABC∽△AMB′,
∴=,即=,
∴AM=;
(2)在图3中,连接OP、ON,过点O作OG⊥AD于点G,
∵半圆与直线CD相切,
∴ON⊥DN,
∴四边形DGON为矩形,
∴DG=ON=2,
∴AG=AD-DG=2.
在Rt△AGO中,∠AGO=90°,AO=2,AG=2,
∴∠AOG=30°,∠OAG=60°.
又∵OA=OP,
∴△AOP为等边三角形,
∴==π.
(3)由(2)可知:△AOP为等边三角形,
∴DN=GO=OA=,
∴CN=CD+DN=4+.
当点B′在直线CD上时,如图4所示,
在Rt△AB′D中(点B′在点D左边),AB′=4,AD=3,
∴B′D==,
∴CB′=4-.
∵AB′为直径,
∴∠ADB′=90°,
∴当点B′在点D右边时,半圆交直线CD于点D、B′.
∴当半圆弧与直线CD只有一个交点时,4-≤d<4或d=4+.
【点睛】
本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的性质、勾股定理以及切线的性质,解题的关键是:(2)利用相似三角形的性质求出AM的长度;(2)通过解直角三角形找出∠OAG=60°;(3)依照题意画出图形,利用数形结合求出d的取值范围.
20、(1)①证明见解析;②25;(2)为或50+1.
【解析】
(1)①在直角三角形ABC中,由30°所对的直角边等于斜边的一半求出AC的长,再由F为AB中点,得到AC=AF=5,确定出三角形ADE为等边三角形,利用等式的性质得到一对角相等,再由AD=AE,利用SAS即可得证;②由全等三角形对应角相等得到∠AEF为直角,EF=CD=x,在三角形AEF中,利用勾股定理即可列出y关于x的函数解析式;(2)分两种情况考虑:①当点在线段CB上时;②当点在线段CB的延长线上时,分别求出三角形ADE面积即可.
【详解】
(1)、①证明:在Rt△ABC中,
∵∠B=30°,AB=10,
∴∠CAB=60°,AC=AB=5,
∵点F是AB的中点,
∴AF=AB=5,
∴AC=AF,
∵△ADE是等边三角形,
∴AD=AE,∠EAD=60°,
∵∠CAB=∠EAD,
即∠CAD+∠DAB=∠FAE+∠DAB,
∴∠CAD=∠FAE,
∴△AEF≌△ADC(SAS);
②∵△AEF≌△ADC,
∴∠AEF=∠C=90°,EF=CD=x,
又∵点F是AB的中点,
∴AE=BE=y,
在Rt△AEF中,勾股定理可得:y2=25+x2,
∴y2﹣x2=25.
(2)①当点在线段CB上时, 由∠DAB=15°,可得∠CAD=45°,△ADC是等腰直角三角形,
∴AD2=50,△ADE的面积为;
②当点在线段CB的延长线上时, 由∠DAB=15°,可得∠ADB=15°,BD=BA=10,
∴在Rt△ACD中,勾股定理可得AD2=200+100,
综上所述,△ADE的面积为或.
【点睛】
此题考查了勾股定理,全等三角形的判定与性质,以及等边三角形的性质,熟练掌握勾股定理是解本题的关键.
21、(1);(2).
【解析】
试题分析:(1)根据概率公式可得;
(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.
解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,
∴抽到数字“﹣1”的概率为;
(2)画树状图如下:
由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,
∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.
22、(1)B,C;(2)2;(3)该校身高在165≤x<175之间的学生约有462人.
【解析】
根据直方图即可求得男生的众数和中位数,求得男生的总人数,就是女生的总人数,然后乘以对应的百分比即可求解.
【详解】
解:(1)∵直方图中,B组的人数为12,最多,
∴男生的身高的众数在B组,
男生总人数为:4+12+10+8+6=40,
按照从低到高的顺序,第20、21两人都在C组,
∴男生的身高的中位数在C组,
故答案为B,C;
(2)女生身高在E组的百分比为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,
∵抽取的样本中,男生、女生的人数相同,
∴样本中,女生身高在E组的人数有:40×5%=2(人),
故答案为2;
(3)600×+480×(25%+15%)=270+192=462(人).
答:该校身高在165≤x<175之间的学生约有462人.
【点睛】
考查频数(率)分布直方图, 频数(率)分布表, 扇形统计图, 中位数, 众数,比较基础,掌握计算方法是解题的关键.
23、﹣2
【解析】
【分析】先利用完全平方公式、平方差公式进行展开,然后合并同类项,最后代入x、y的值进行计算即可得.
【详解】原式=x1+2xy+2y1﹣(2y1﹣x1)﹣1x1
=x1+2xy+2y1﹣2y1+x1﹣1x1
=2xy,
当x=+1,y=﹣1时,
原式=2×(+1)×(﹣1)
=2×(3﹣2)
=﹣2.
【点睛】本题考查了整式的混合运算——化简求值,熟练掌握完全平方公式、平方差公式是解题的关键.
24、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元
【解析】
解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,
根据题意得方程组得:,…2分
解方程组得:,
∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元…4分;
(2)设该商店购进A种纪念品x个,则购进B种纪念品有(100﹣x)个,
∴,…6分
解得:50≤x≤53,…7分
∵x 为正整数,
∴共有4种进货方案…8分;
(3)因为B种纪念品利润较高,故B种数量越多总利润越高,
因此选择购A种50件,B种50件.…10分
总利润=50×20+50×30=2500(元)
∴当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元.…12分
2023年河南省南阳市镇平县六校联考中考数学三模试卷(含解析): 这是一份2023年河南省南阳市镇平县六校联考中考数学三模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年河南省南阳市镇平县多校联考中考数学模拟试卷(含解析): 这是一份2023年河南省南阳市镇平县多校联考中考数学模拟试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年河南省新乡辉县联考中考联考数学试卷含解析: 这是一份2022年河南省新乡辉县联考中考联考数学试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,sin45°的值等于等内容,欢迎下载使用。