2022届云南省保山市施甸县中考数学押题卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中 5 个黑球, 从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋 中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:
摸球试验次数
100
1000
5000
10000
50000
100000
摸出黑球次数
46
487
2506
5008
24996
50007
根据列表,可以估计出 m 的值是( )
A.5 B.10 C.15 D.20
2.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是
A.射线OE是∠AOB的平分线
B.△COD是等腰三角形
C.C、D两点关于OE所在直线对称
D.O、E两点关于CD所在直线对称
3.如图,在Rt△ABC中,∠C=90°, BE平分∠ABC,ED垂直平分AB于D,若AC=9,则AE的值是 ( )
A. B. C.6 D.4
4.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )
A.能中奖一次 B.能中奖两次
C.至少能中奖一次 D.中奖次数不能确定
5.如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为( )
A.50° B.20° C.60° D.70°
6.下列各式计算正确的是( )
A. B. C. D.
7.某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在( )
A.50.5~60.5 分 B.60.5~70.5 分 C.70.5~80.5 分 D.80.5~90.5 分
8.不等式组的解集是( )
A.x>﹣1 B.x≤2 C.﹣1<x<2 D.﹣1<x≤2
9.如图,PA,PB分别与⊙O相切于A,B两点,若∠C=65°,则∠P的度数为( )
A.65° B.130° C.50° D.100°
10.-5的相反数是( )
A.5 B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.计算:﹣|﹣2|+()﹣1=_____.
12.如图,已知直线y=x+4与双曲线y=(x<0)相交于A、B两点,与x轴、y轴分别相交于D、C两点,若AB=2,则k=_____.
13.如图,四边形ABCD是菱形,☉O经过点A,C,D,与BC相交于点E,连接AC,AE,若∠D=78°,则∠EAC=________°.
14.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣2x2﹣2x+1=﹣x2+5x﹣3:则所捂住的多项式是___.
15.2017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,用含有m、n的式子表示AB的长为______.
16.已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,若往原纸箱中再放入x个白球,然后从箱中随机取出一个白球的概率是,则x的值为_____
三、解答题(共8题,共72分)
17.(8分)全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:
本次抽样调查了 个家庭;将图①中的条形图补充完整;学习时间在2~2.5小时的部分对应的扇形圆心角的度数是 度;若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?
18.(8分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.
19.(8分)中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
成绩x/分
频数
频率
50≤x<60
10
0.05
60≤x<70
30
0.15
70≤x<80
40
n
80≤x<90
m
0.35
90≤x≤100
50
0.25
请根据所给信息,解答下列问题:m= ,n= ;请补全频数分布直方图;若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?
20.(8分)的除以20与18的差,商是多少?
21.(8分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.
求证:BE = DF;连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.
22.(10分)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.
(1)判断直线AC与圆O的位置关系,并证明你的结论;
(2)若AC=8,cos∠BED=,求AD的长.
23.(12分)如图,已知一次函数y=x+m的图象与x轴交于点A(﹣4,0),与二次函数y=ax1+bx+c的图象交于y轴上一点B,该二次函数的顶点C在x轴上,且OC=1.
(1)求点B坐标;
(1)求二次函数y=ax1+bx+c的解析式;
(3)设一次函数y=x+m的图象与二次函数y=ax1+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD是以BD为直角边的直角三角形,求点P的坐标.
24.如图1,抛物线y=ax2+bx﹣2与x轴交于点A(﹣1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).
(1)求该抛物线的解析式;
(2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;
(3)如图3,连结AC,将△AOC绕点O逆时针方向旋转,记旋转中的三角形为△A′OC′,在旋转过程中,直线OC′与直线BE交于点Q,若△BOQ为等腰三角形,请直接写出点Q的坐标.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
由概率公式可知摸出黑球的概率为,分析表格数据可知的值总是在0.5左右,据此可求解m值.
【详解】
解:分析表格数据可知的值总是在0.5左右,则由题意可得,解得m=10,
故选择B.
【点睛】
本题考查了概率公式的应用.
2、D
【解析】
试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE.
∵在△EOC与△EOD中,OC=OD,CE=DE,OE=OE,
∴△EOC≌△EOD(SSS).
∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意.
B、根据作图得到OC=OD,
∴△COD是等腰三角形,正确,不符合题意.
C、根据作图得到OC=OD,
又∵射线OE平分∠AOB,∴OE是CD的垂直平分线.
∴C、D两点关于OE所在直线对称,正确,不符合题意.
D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,
∴O、E两点关于CD所在直线不对称,错误,符合题意.
故选D.
3、C
【解析】
由角平分线的定义得到∠CBE=∠ABE,再根据线段的垂直平分线的性质得到EA=EB,则∠A=∠ABE,可得∠CBE=30°,根据含30度的直角三角形三边的关系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.
【详解】
解:∵BE平分∠ABC,
∴∠CBE=∠ABE,
∵ED垂直平分AB于D,
∴EA=EB,
∴∠A=∠ABE,
∴∠CBE=30°,
∴BE=2EC,即AE=2EC,
而AE+EC=AC=9,
∴AE=1.
故选C.
4、D
【解析】
由于中奖概率为,说明此事件为随机事件,即可能发生,也可能不发生.
【详解】
解:根据随机事件的定义判定,中奖次数不能确定
故选D.
【点睛】
解答此题要明确概率和事件的关系:
,为不可能事件;
为必然事件;
为随机事件.
5、D
【解析】
题解析:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故选D.
【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
6、B
【解析】
A选项中,∵不是同类二次根式,不能合并,∴本选项错误;
B选项中,∵,∴本选项正确;
C选项中,∵,而不是等于,∴本选项错误;
D选项中,∵,∴本选项错误;
故选B.
7、C
【解析】
分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.
详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.
点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
8、D
【解析】
由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式组的解集为﹣1<x≤2,故选D
9、C
【解析】
试题分析:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.
考点:切线的性质.
10、A
【解析】
由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5.
故选A.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、﹣1
【解析】
根据立方根、绝对值及负整数指数幂等知识点解答即可.
【详解】
原式= -2 -2+3= -1
【点睛】
本题考查了实数的混合运算,解题的关键是掌握运算法则及运算顺序.
12、-3
【解析】
设A(a, a+4),B(c, c+4),则
解得: x+4=,即x2+4x−k=0,
∵直线y=x+4与双曲线y=相交于A、B两点,
∴a+c=−4,ac=-k,
∴(c−a)2=(c+a)2−4ac=16+4k,
∵AB=,
∴由勾股定理得:(c−a)2+[c+4−(a+4)]2=()2,
2 (c−a)2=8,
(c−a)2=4,
∴16+4k =4,
解得:k=−3,
故答案为−3.
点睛:本题考查了一次函数与反比例函数的交点问题、根与系数的关系、勾股定理、图象上点的坐标特征等,题目具有一定的代表性,综合性强,有一定难度.
13、1.
【解析】
解:∵四边形ABCD是菱形,∠D=78°,
∴∠ACB=(180°-∠D)=51°,
又∵四边形AECD是圆内接四边形,
∴∠AEB=∠D=78°,
∴∠EAC=∠AEB-∠ACB=1°.
故答案为:1°
14、x2+7x-4
【解析】
设他所捂的多项式为A,则接下来利用去括号法则对其进行去括号,然后合并同类项即可.
【详解】
解:设他所捂的多项式为A,则根据题目信息可得
他所捂的多项式为
故答案为
【点睛】
本题是一道关于整数加减运算的题目,解答本题的关键是熟练掌握整数的加减运算;
15、
【解析】
过点C作CE⊥CF延长BA交CE于点E,先求得DF的长,可得到AE的长,最后可求得AB的长.
【详解】
解:延长BA交CE于点E,设CF⊥BF于点F,如图所示.
在Rt△BDF中,BF=n,∠DBF=30°,
∴.
在Rt△ACE中,∠AEC=90°,∠ACE=45°,
∴AE=CE=BF=n,
∴.
故答案为:.
【点睛】
此题考查解直角三角形的应用,解题的关键在于做辅助线.
16、1.
【解析】
先根据概率公式得到,解得.
【详解】
根据题意得,
解得.
故答案为:.
【点睛】
本题考查了概率公式:随机事件的概率事件可能出现的结果数除以所有可能出现的结果数.
三、解答题(共8题,共72分)
17、 (1)200;(2)见解析;(3)36;(4)该社区学习时间不少于1小时的家庭约有2100个.
【解析】
(1)根据1.5~2小时的圆心角度数求出1.5~2小时所占的百分比,再用1.5~2小时的人数除以所占的百分比,即可得出本次抽样调查的总家庭数;
(2)用抽查的总人数乘以学习0.5-1小时的家庭所占的百分比求出学习0.5-1小时的家庭数,再用总人数减去其它家庭数,求出学习2-2.5小时的家庭数,从而补全统计图;
(3)用360°乘以学习时间在2~2.5小时所占的百分比,即可求出学习时间在2~2.5小时的部分对应的扇形圆心角的度数;
(4)用该社区所有家庭数乘以学习时间不少于1小时的家庭数所占的百分比即可得出答案.
【详解】
解:(1)本次抽样调查的家庭数是:30÷=200(个);
故答案为200;
(2)学习0.5﹣1小时的家庭数有:200×=60(个),
学习2﹣2.5小时的家庭数有:200﹣60﹣90﹣30=20(个),
补图如下:
(3)学习时间在2~2.5小时的部分对应的扇形圆心角的度数是:360×=36°;
故答案为36;
(4)根据题意得:
3000×=2100(个).
答:该社区学习时间不少于1小时的家庭约有2100个.
【点睛】
本题考查条形统计图、扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.
18、树高为 5.5 米
【解析】
根据两角相等的两个三角形相似,可得 △DEF∽△DCB ,利用相似三角形的对边成比例,可得, 代入数据计算即得BC的长,由 AB=AC+BC ,即可求出树高.
【详解】
∵∠DEF=∠DCB=90°,∠D=∠D,
∴△DEF∽△DCB
∴ ,
∵DE=0.4m,EF=0.2m,CD=8m,
∴,
∴CB=4(m),
∴AB=AC+BC=1.5+4=5.5(米)
答:树高为 5.5 米.
【点睛】
本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.
19、(1)70,0.2(2)70(3)750
【解析】
(1)根据题意和统计表中的数据可以求得m、n的值;
(2)根据(1)中求得的m的值,从而可以将条形统计图补充完整;
(3)根据统计表中的数据可以估计该校参加这次比赛的3000名学生中成绩“优”等约有多少人.
【详解】
解:(1)由题意可得,
m=200×0.35=70,n=40÷200=0.2,
故答案为70,0.2;
(2)由(1)知,m=70,
补全的频数分布直方图,如下图所示;
(3)由题意可得,
该校参加这次比赛的3000名学生中成绩“优”等约有:3000×0.25=750(人),
答:该校参加这次比赛的3000名学生中成绩“优”等约有750人.
【点睛】
本题考查频数分布直方图、频数分布表、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
20、
【解析】
根据题意可用乘的积除以20与18的差,所得的商就是所求的数,列式解答即可.
【详解】
解:×÷(20﹣18)
【点睛】
考查有理数的混合运算,列出式子是解题的关键.
21、(1)证明见解析;(2)四边形AEMF是菱形,证明见解析.
【解析】
(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE≌△ADF;
(2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF是菱形.
【详解】
(1)证明:∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
在Rt△ABE和Rt△ADF中,
∵,
∴Rt△ADF≌Rt△ABE(HL)
∴BE=DF;
(2)四边形AEMF是菱形,理由为:
证明:∵四边形ABCD是正方形,
∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),
BC=DC(正方形四条边相等),
∵BE=DF(已证),
∴BC-BE=DC-DF(等式的性质),
即CE=CF,
在△COE和△COF中,
,
∴△COE≌△COF(SAS),
∴OE=OF,
又OM=OA,
∴四边形AEMF是平行四边形(对角线互相平分的四边形是平行四边形),
∵AE=AF,
∴平行四边形AEMF是菱形.
22、(1)AC与⊙O相切,证明参见解析;(2).
【解析】
试题分析:(1)由于OC⊥AD,那么∠OAD+∠AOC=90°,又∠BED=∠BAD,且∠BED=∠C,于是∠OAD=∠C,从而有∠C+∠AOC=90°,再利用三角形内角和定理,可求∠OAC=90°,即AC是⊙O的切线;(2)连接BD,AB是直径,那么∠ADB=90°,在Rt△AOC中,由于AC=8,∠C=∠BED,cos∠BED=,利用三角函数值,可求OA=6,即AB=12,在Rt△ABD中,由于AB=12,∠OAD=∠BED,cos∠BED=,同样利用三角函数值,可求AD.
试题解析:(1)AC与⊙O相切.∵弧BD是∠BED与∠BAD所对的弧,∴∠BAD=∠BED,∵OC⊥AD,∴∠AOC+∠BAD=90°,∴∠BED+∠AOC=90°,即∠C+∠AOC=90°,∴∠OAC=90°,∴AB⊥AC,即AC与⊙O相切;(2)连接BD.∵AB是⊙O直径,∴∠ADB=90°,在Rt△AOC中,∠CAO=90°,∵AC=8,∠ADB=90°,cos∠C=cos∠BED=,∴AO=6,∴AB=12,在Rt△ABD中,∵cos∠OAD=cos∠BED=,∴AD=AB•cos∠OAD=12×=.
考点:1.切线的判定;2.解直角三角形.
23、(1)B(0,1);(1)y=0.5x1﹣1x+1;(3)P1(1,0)和P1(7.15,0);
【解析】
(1)根据y=0.5x+m交x轴于点A,进而得出m的值,再利用与y轴交于点B,即可得出B点坐标;(1)二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1.得出可设二次函数y=ax1+bx+c=a(x﹣1)1,进而求出即可;(3)根据当B为直角顶点,当D为直角顶点时,分别利用三角形相似对应边成比例求出即可.
【详解】
(1)∵y=x+1交x轴于点A(﹣4,0),
∴0=×(﹣4)+m,
∴m=1,
与y轴交于点B,
∵x=0,
∴y=1
∴B点坐标为:(0,1),
(1)∵二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1
∴可设二次函数y=a(x﹣1)1
把B(0,1)代入得:a=0.5
∴二次函数的解析式:y=0.5x1﹣1x+1;
(3)(Ⅰ)当B为直角顶点时,过B作BP1⊥AD交x轴于P1点
由Rt△AOB∽Rt△BOP1
∴,
∴,
得:OP1=1,
∴P1(1,0),
(Ⅱ)作P1D⊥BD,连接BP1,
将y=0.5x+1与y=0.5x1﹣1x+1联立求出两函数交点坐标:
D点坐标为:(5,4.5),
则AD=,
当D为直角顶点时
∵∠DAP1=∠BAO,∠BOA=∠ADP1,
∴△ABO∽△AP1D,
∴, ,
解得:AP1=11.15,
则OP1=11.15﹣4=7.15,
故P1点坐标为(7.15,0);
∴点P的坐标为:P1(1,0)和P1(7.15,0).
【点睛】
此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解.
24、(1)y=x2﹣x﹣2;(2)9;(3)Q坐标为(﹣)或(4﹣)或(2,1)或(4+,﹣).
【解析】
试题分析:把点代入抛物线,求出的值即可.
先用待定系数法求出直线BE的解析式,进而求得直线AD的解析式,设则表示出,用配方法求出它的最大值,
联立方程求出点的坐标, 最大值=,
进而计算四边形EAPD面积的最大值;
分两种情况进行讨论即可.
试题解析:(1)∵在抛物线上,
∴
解得
∴抛物线的解析式为
(2)过点P作轴交AD于点G,
∵
∴直线BE的解析式为
∵AD∥BE,设直线AD的解析式为 代入,可得
∴直线AD的解析式为
设则
则
∴当x=1时,PG的值最大,最大值为2,
由 解得 或
∴
∴ 最大值=
∵AD∥BE,
∴
∴S四边形APDE最大=S△ADP最大+
(3)①如图3﹣1中,当时,作于T.
∵
∴
∴
∴
可得
②如图3﹣2中,当时,
当时,
当时,Q3
综上所述,满足条件点点Q坐标为或或或
云南省2019年中考数学押题卷(含解析): 这是一份云南省2019年中考数学押题卷(含解析),共12页。试卷主要包含了8×1013等内容,欢迎下载使用。
初中数学中考复习 云南省2019年中考数学押题卷(含解析): 这是一份初中数学中考复习 云南省2019年中考数学押题卷(含解析),共12页。试卷主要包含了8×1013等内容,欢迎下载使用。
2022年云南省双柏县联考中考数学押题卷含解析: 这是一份2022年云南省双柏县联考中考数学押题卷含解析,共21页。试卷主要包含了化简•a5所得的结果是等内容,欢迎下载使用。