2022届湖北省黄冈市浠水县巴河中学中考数学最后一模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在Rt△ABC中,∠ACB=90°,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为( )
A. B. C. D.
2.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是( )
A. B. C. D.
3.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是( )
A.∠3=∠A B.∠D=∠DCE C.∠1=∠2 D.∠D+∠ACD=180°
4.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为( )
A.100° B.110° C.115° D.120°
6.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加1600,设扩大后的正方形绿地边长为xm,下面所列方程正确的是( )
A.x(x-60)=1600
B.x(x+60)=1600
C.60(x+60)=1600
D.60(x-60)=1600
7.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )
A.
B.
C.
D.
8.﹣的绝对值是( )
A.﹣ B. C.﹣2 D.2
9.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=( )
A.12 B.8 C.4 D.3
10.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为( )
A. B. C. D.4
11.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是( )
A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE
12.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )
A.120元 B.100元 C.80元 D.60元
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是 分.
14.如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为__.
15.设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则Sn可表示为________.(用含n的代数式表示,其中n为正整数)
16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.
17.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC= .
18.在中,若,则的度数是______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在Rt△ABC中,∠C=90°,AC,tanB,半径为2的⊙C分别交AC,BC于点D、E,得到DE弧.
(1)求证:AB为⊙C的切线.
(2)求图中阴影部分的面积.
20.(6分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元 求甲、乙型号手机每部进价为多少元? 该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案 售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值
21.(6分)如图,抛物线交X轴于A、B两点,交Y轴于点C ,.
(1)求抛物线的解析式;
(2)平面内是否存在一点P,使以A,B,C,P为顶点的四边形为平行四边形,若存在直接写出P的坐标,若不存在请说明理由。
22.(8分)如图,AB是⊙O的直径,C是弧AB的中点,弦CD与AB相交于E.
若∠AOD=45°,求证:CE=ED;(2)若AE=EO,求tan∠AOD的值.
23.(8分)解不等式组.
24.(10分)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.
25.(10分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
26.(12分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈,cos53°≈,tan53°≈)
27.(12分)在平面直角坐标系中,一次函数的图象与反比例函数(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).
求一次函数和反比例函数解析式.若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.根据图象,直接写出不等式的解集.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.
【详解】
由旋转可知AD=BD,
∵∠ACB=90°,AC=2,
∴CD=BD,
∵CB=CD,
∴△BCD是等边三角形,
∴∠BCD=∠CBD=60°,
∴BC=AC=2,
∴阴影部分的面积=2×2÷2−=2−.
故答案选:B.
【点睛】
本题考查的知识点是旋转的性质及扇形面积的计算,解题的关键是熟练的掌握旋转的性质及扇形面积的计算.
2、C
【解析】
左视图就是从物体的左边往右边看.小正方形应该在右上角,故B错误,看不到的线要用虚线,故A错误,大立方体的边长为3cm,挖去的小立方体边长为1cm,所以小正方形的边长应该是大正方形,故D错误,所以C正确.
故此题选C.
3、C
【解析】
由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.
【详解】
A.∵∠3=∠A,
本选项不能判断AB∥CD,故A错误;
B.∵∠D=∠DCE,
∴AC∥BD.
本选项不能判断AB∥CD,故B错误;
C.∵∠1=∠2,
∴AB∥CD.
本选项能判断AB∥CD,故C正确;
D.∵∠D+∠ACD=180°,
∴AC∥BD.
故本选项不能判断AB∥CD,故D错误.
故选:C.
【点睛】
考查平行线的判定,掌握平行线的判定定理是解题的关键.
4、D
【解析】
先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.
【详解】
∵点A(a,-b)在第一象限内,
∴a>0,-b>0,
∴b<0,
∴点B((a,b)在第四象限,
故选D.
【点睛】
本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.
5、B
【解析】
连接AD,BD,由圆周角定理可得∠ABD=20°,∠ADB=90°,从而可求得∠BAD=70°,再由圆的内接四边形对角互补得到∠BCD=110°.
【详解】
如下图,连接AD,BD,
∵同弧所对的圆周角相等,∴∠ABD=∠AED=20°,
∵AB为直径,∴∠ADB=90°,
∴∠BAD=90°-20°=70°,
∴∠BCD=180°-70°=110°.
故选B
【点睛】
本题考查圆中的角度计算,熟练运用圆周角定理和内接四边形的性质是关键.
6、A
【解析】
试题分析:根据题意可得扩建的部分相当于一个长方形,这个长方形的长和宽分别为x米和(x-60)米,根据长方形的面积计算法则列出方程.
考点:一元二次方程的应用.
7、D
【解析】
根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.
【详解】
设每枚黄金重x两,每枚白银重y两,
由题意得:,
故选:D.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.
8、B
【解析】
根据求绝对值的法则,直接计算即可解答.
【详解】
,
故选:B.
【点睛】
本题主要考查求绝对值的法则,掌握负数的绝对值等于它的相反数,是解题的关键.
9、C
【解析】
过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可.
【详解】
延长EP、FP分别交AB、BC于G、H,
则由PD∥AB,PE∥BC,PF∥AC,可得,
四边形PGBD,EPHC是平行四边形,
∴PG=BD,PE=HC,
又△ABC是等边三角形,
又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,
∴PF=PG=BD,PD=DH,
又△ABC的周长为12,
∴PD+PE+PF=DH+HC+BD=BC=×12=4,
故选C.
【点睛】
本题主要考查了平行四边形的判定及性质以及等边三角形的判定及性质,等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.
10、A
【解析】
试题分析:由题意易知:∠CAB=41°,∠ACD=30°.
若旋转角度为11°,则∠ACO=30°+11°=41°.
∴∠AOC=180°-∠ACO-∠CAO=90°.
在等腰Rt△ABC中,AB=4,则AO=OC=2.
在Rt△AOD1中,OD1=CD1-OC=3,
由勾股定理得:AD1=.
故选A.
考点: 1.旋转;2.勾股定理.
11、C
【解析】
解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.
点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.
12、C
【解析】
解:设该商品的进价为x元/件,
依题意得:(x+20)÷=200,解得:x=1.
∴该商品的进价为1元/件.
故选C.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、88
【解析】
试题分析:根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可:
∵笔试按60%、面试按40%计算,
∴总成绩是:90×60%+85×40%=88(分).
14、或
【解析】
分析:依据△DCM为直角三角形,需要分两种情况进行讨论:当∠CDM=90°时,△CDM是直角三角形;当∠CMD=90°时,△CDM是直角三角形,分别依据含30°角的直角三角形的性质以及等腰直角三角形的性质,即可得到折痕MN的长.
详解:分两种情况:
①如图,当∠CDM=90°时,△CDM是直角三角形,
∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,
∴∠C=30°,AB=AC=+2,
由折叠可得,∠MDN=∠A=60°,
∴∠BDN=30°,
∴BN=DN=AN,
∴BN=AB=,
∴AN=2BN=,
∵∠DNB=60°,
∴∠ANM=∠DNM=60°,
∴∠AMN=60°,
∴AN=MN=;
②如图,当∠CMD=90°时,△CDM是直角三角形,
由题可得,∠CDM=60°,∠A=∠MDN=60°,
∴∠BDN=60°,∠BND=30°,
∴BD=DN=AN,BN=BD,
又∵AB=+2,
∴AN=2,BN=,
过N作NH⊥AM于H,则∠ANH=30°,
∴AH=AN=1,HN=,
由折叠可得,∠AMN=∠DMN=45°,
∴△MNH是等腰直角三角形,
∴HM=HN=,
∴MN=,
故答案为:或.
点睛:本题考查了翻折变换-折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
15、
【解析】
试题解析:如图,连接D1E1,设AD1、BE1交于点M,
∵AE1:AC=1:(n+1),
∴S△ABE1:S△ABC=1:(n+1),
∴S△ABE1=,
∵,
∴,
∴S△ABM:S△ABE1=(n+1):(2n+1),
∴S△ABM:=(n+1):(2n+1),
∴Sn=.
故答案为.
16、1
【解析】
分析:类比于现在我们的十进制“满十进一”,可以表示满六进一的数为:万位上的数×64+千位上的数×63+百位上的数×62+十位上的数×6+个位上的数,即1×64+2×63+3×62+0×6+2=1.
详解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1,
故答案为:1.
点睛:本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.
17、1+
【解析】
试题分析:连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的长;
过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长.
解:连接AB,则AB为⊙M的直径.
Rt△ABO中,∠BAO=∠OCB=60°,
∴OB=OA=×=.
过B作BD⊥OC于D.
Rt△OBD中,∠COB=45°,
则OD=BD=OB=.
Rt△BCD中,∠OCB=60°,
则CD=BD=1.
∴OC=CD+OD=1+.
故答案为1+.
点评:此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.
18、
【解析】
先根据非负数的性质求出,,再由特殊角的三角函数值求出与的值,根据三角形内角和定理即可得出结论.
【详解】
在中,,
,,
,,
,
故答案为:.
【点睛】
本题考查了非负数的性质以及特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1)证明见解析;(2)1-π.
【解析】
(1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;
(2)分别求出△ACB的面积和扇形DCE的面积,即可得出答案.
【详解】
(1)过C作CF⊥AB于F.
∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.
∵△ACB的面积S,∴CF2,∴CF为⊙C的半径.
∵CF⊥AB,∴AB为⊙C的切线;
(2)图中阴影部分的面积=S△ACB﹣S扇形DCE1﹣π.
【点睛】
本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键.
20、 (1) 甲种型号手机每部进价为1000元,乙种型号手机每部进价为800元;(2) 共有四种方案;(3) 当m=80时,w始终等于8000,取值与a无关
【解析】
(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元根据题意列方程组求出x、y的值即可;(2)设购进甲种型号手机a部,这购进乙种型号手机(20-a)部,根据题意列不等式组求出a的取值范围,根据a为整数求出a的值即可明确方案(3)
利用利润=单个利润数量,用a表示出利润W,当利润与a无关时,(2)中的方案利润相同,求出m值即可;
【详解】
(1) 设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,
,解得,
(2) 设购进甲种型号手机a部,这购进乙种型号手机(20-a)部,
17400≤1000a+800(20-a)≤18000,解得7≤a≤10,
∵a为自然数,
∴有a为7、8、9、10共四种方案,
(3) 甲种型号手机每部利润为1000×40%=400,
w=400a+(1280-800-m)(20-a)=(m-80)a+9600-20m,
当m=80时,w始终等于8000,取值与a无关.
【点睛】
本题考查了列二元一次方程组解实际问题的运用,根据题意找出等量关系列出方程是解题关键.
21、(1);(2) (3,-4) 或(5,4)或(-5,4)
【解析】
(1)设|OA|=1,确定A,B,C三点坐标,然后用待定系数法即可完成;
(2)先画出存在的点,然后通过平移和计算确定坐标;
【详解】
解:(1)设|OA|=1,则A(-1,0),B(4,0)C(0,4)
设抛物线的解析式为y=ax2+bx+c
则有: 解得
所以函数解析式为:
(2)存在,(3,-4) 或(5,4)或(-5,4)
理由如下:如图:
P1相当于C点向右平移了5个单位长度,则坐标为(5,4);
P2相当于C点向左平移了5个单位长度,则坐标为(-5,4);
设P3坐标为(m,n)在第四象限,要使A P3BC是平行四边形,
则有A P3=BC, B P3=AC
∴ 即 (舍去)
P3坐标为(3,-4)
【点睛】
本题主要考查了二次函数综合题,此题涉及到待定系数法求二次函数解析式,通过作图确认平行四边形存在,然后通过观察和计算确定P点坐标;解题的关键在于规范作图,以便于树形结合.
22、(1)见解析;(2)tan∠AOD=.
【解析】
(1)作DF⊥AB于F,连接OC,则△ODF是等腰直角三角形,得出OC=OD=DF,由垂径定理得出∠COE=90°,证明△DEF∽△CEO得出,即可得出结论;
(2)由题意得OE=OA=OC,同(1)得△DEF∽△CEO,得出,设⊙O的半径为2a(a>0),则OD=2a,EO=a,设EF=x,则DF=2x,在Rt△ODF中,由勾股定理求出x=a,得出DF=a,OF=EF+EO=a,由三角函数定义即可得出结果.
【详解】
(1)证明:作DF⊥AB于F,连接OC,如图所示:
则∠DFE=90°,
∵∠AOD=45°,
∴△ODF是等腰直角三角形,
∴OC=OD=DF,
∵C是弧AB的中点,
∴OC⊥AB,
∴∠COE=90°,
∵∠DEF=∠CEO,
∴△DEF∽△CEO,
∴,
∴CE=ED;
(2)如图所示:
∵AE=EO,
∴OE=OA=OC,
同(1)得:,△DEF∽△CEO,
∴,
设⊙O的半径为2a(a>0),则OD=2a,EO=a,
设EF=x,则DF=2x,
在Rt△ODF中,由勾股定理得:(2x)2+(x+a)2=(2a)2,
解得:x=a,或x=﹣a(舍去),
∴DF=a,OF=EF+EO=a,
∴.
【点睛】
本题考查了等腰直角三角形的判定与性质、相似三角形的判定与性质、勾股定理、垂径定理、三角函数等知识,熟练掌握相似三角形的判定与性质、勾股定理是关键.
23、x<﹣1.
【解析】
分析:
按照解一元一次不等式组的一般步骤解答即可.
详解:
,
由①得x≤1,
由②得x<﹣1,
∴原不等式组的解集是x<﹣1.
点睛:“熟练掌握一元一次不等式组的解法”是正确解答本题的关键.
24、两人之中至少有一人直行的概率为.
【解析】
【分析】画树状图展示所有9种等可能的结果数,找出“至少有一人直行”的结果数,然后根据概率公式求解.
【详解】画树状图为:
共有9种等可能的结果数,其中两人之中至少有一人直行的结果数为5,
所以两人之中至少有一人直行的概率为.
【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.概率=所求情况数与总情况数之比.
25、 (1)抛物线的解析式为:y=﹣x1+x+1
(1)存在,P1(,2),P1(,),P3(,﹣)
(3)当点E运动到(1,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.
【解析】
试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;
(1)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P1,P3;作CH垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;
(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.
试题解析:(1)∵抛物线y=﹣x1+mx+n经过A(﹣1,0),C(0,1).
解得:,
∴抛物线的解析式为:y=﹣x1+x+1;
(1)∵y=﹣x1+x+1,
∴y=﹣(x﹣)1+,
∴抛物线的对称轴是x=.
∴OD=.
∵C(0,1),
∴OC=1.
在Rt△OCD中,由勾股定理,得
CD=.
∵△CDP是以CD为腰的等腰三角形,
∴CP1=CP1=CP3=CD.
作CH⊥x轴于H,
∴HP1=HD=1,
∴DP1=2.
∴P1(,2),P1(,),P3(,﹣);
(3)当y=0时,0=﹣x1+x+1
∴x1=﹣1,x1=2,
∴B(2,0).
设直线BC的解析式为y=kx+b,由图象,得
,
解得:,
∴直线BC的解析式为:y=﹣x+1.
如图1,过点C作CM⊥EF于M,设E(a,﹣a+1),F(a,﹣a1+a+1),
∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).
∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,
=+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),
=﹣a1+2a+(0≤x≤2).
=﹣(a﹣1)1+
∴a=1时,S四边形CDBF的面积最大=,
∴E(1,1).
考点:1、勾股定理;1、等腰三角形的性质;3、四边形的面积;2、二次函数的最值
26、(20-5)千米.
【解析】
分析:作BD⊥AC,设AD=x,在Rt△ABD中求得BD=x,在Rt△BCD中求得CD=x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=可得答案.
详解:过点B作BD⊥ AC,
依题可得:∠BAD=60°,∠CBE=37°,AC=13(千米),
∵BD⊥AC,
∴∠ABD=30°,∠CBD=53°,
在Rt△ABD中,设AD=x,
∴tan∠ABD=
即tan30°=,
∴BD=x,
在Rt△DCB中,
∴tan∠CBD=
即tan53°=,
∴CD=
∵CD+AD=AC,
∴x+=13,解得,x=
∴BD=12-,
在Rt△BDC中,
∴cos∠CBD=tan60°=,
即:BC=(千米),
故B、C两地的距离为(20-5)千米.
点睛:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.
27、(1)y=﹣x+,y=;(2)12;(3) x<﹣2或0<x<4.
【解析】
(1)将点A坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B坐标,即可求△ABF的面积;(3)直接根据图象可得.
【详解】
(1)∵一次函数y=﹣x+b的图象与反比例函数y= (k≠0)图象交于A(﹣3,2)、B两点,
∴3=﹣×(﹣2)+b,k=﹣2×3=﹣6
∴b=,k=﹣6
∴一次函数解析式y=﹣,反比例函数解析式y=.
(2)根据题意得: ,
解得: ,
∴S△ABF=×4×(4+2)=12
(3)由图象可得:x<﹣2或0<x<4
【点睛】
本题考查了反比例函数图象与一次函数图象的交点问题,待定系数法求解析式,熟练运用函数图象解决问题是本题的关键.
2023年湖北省黄冈市浠水县河口中学中考数学一模试卷(含答案解析): 这是一份2023年湖北省黄冈市浠水县河口中学中考数学一模试卷(含答案解析),共20页。试卷主要包含了 下列计算正确的是等内容,欢迎下载使用。
2023年湖北省黄冈市浠水县方铺中学中考数学一模试卷(含答案解析): 这是一份2023年湖北省黄冈市浠水县方铺中学中考数学一模试卷(含答案解析),共22页。试卷主要包含了 下列计算正确的是等内容,欢迎下载使用。
2023年湖北省黄冈市浠水县华桂中学中考数学一模试卷(含解析): 这是一份2023年湖北省黄冈市浠水县华桂中学中考数学一模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。