2021-2022学年湖北省黄冈市红安二中学中考数学最后一模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是( )
A. B. C. D.
2.下列图标中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
3.如图,已知线段AB,分别以A,B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至点M,则∠BCM的度数为( )
A.40° B.50° C.60° D.70°
4.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2所示的算筹图我们可以表述为( )
A. B. C. D.
5.如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为( )
A.5 B.4 C.3 D.2
6.如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是( )
A. B. C. D.
7.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于( )
A.9 B.7 C.﹣9 D.﹣7
8.不等式组的解集在数轴上表示正确的是( )
A. B.
C. D.
9.世界因爱而美好,在今年我校的“献爱心”捐款活动中,九年级三班50名学生积极加献爱心捐款活动,班长将捐款情况进行了统计,并绘制成了统计图,根据图中提供的信息,捐款金额的众数和中位数分别是
A.20、20 B.30、20 C.30、30 D.20、30
10.下列几何体中,俯视图为三角形的是( )
A. B. C. D.
11.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC的面积为10,且sinA=,那么点C的位置可以在( )
A.点C1处 B.点C2处 C.点C3处 D.点C4处
12.已知A、B两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A市到B市乘动车比乘火车少用40分钟,设动车速度为每小时x千米,则可列方程为( )
A. B.
C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.观察下列各等式:
……
根据以上规律可知第11行左起第一个数是__.
14.函数y= 中,自变量x的取值范围为_____.
15.如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm,弧长是cm,那么围成的圆锥的高度是 cm.
16.一个正方形AOBC各顶点的坐标分别为A(0,3),O(0,0),B(3,0),C(3,3).若以原点为位似中心,将这个正方形的边长缩小为原来的,则新正方形的中心的坐标为_____.
17.如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD=3,则S△AOC=__.
18.若不等式组有解,则m的取值范围是______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知,在平面直角坐标系xOy中,抛物线L:y=x2-4x+3与x轴交于A,B两点(点A在点B的左侧),顶点为C.
(1)求点C和点A的坐标.
(2)定义“L双抛图形”:直线x=t将抛物线L分成两部分,首先去掉其不含顶点的部分,然后作出抛物线剩余部分关于直线x=t的对称图形,得到的整个图形称为抛物线L关于直线x=t的“L双抛图形”(特别地,当直线x=t恰好是抛物线的对称轴时,得到的“L双抛图形”不变),
①当t=0时,抛物线L关于直找x=0的“L双抛图形”如图所示,直线y=3与“L双抛图形”有______个交点;
②若抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,结合图象,直接写出t的取值范围:______;
③当直线x=t经过点A时,“L双抛图形”如图所示,现将线段AC所在直线沿水平(x轴)方向左右平移,交“L双抛图形”于点P,交x轴于点Q,满足PQ=AC时,求点P的坐标.
20.(6分)学校决定从甲、乙两名同学中选拔一人参加“诵读经典”大赛,在相同的测试条件下,甲、乙两人5次测试成绩(单位:分)如下:
甲:79,86,82,85,83.
乙:88,81,85,81,80.
请回答下列问题:甲成绩的中位数是______,乙成绩的众数是______;经计算知,.请你求出甲的方差,并从平均数和方差的角度推荐参加比赛的合适人选.
21.(6分)解方程:3x2﹣2x﹣2=1.
22.(8分)如图,在矩形ABCD中,E是边BC上的点,AE=BC, DF⊥AE,垂足为F,连接DE.
求证:AB=DF.
23.(8分)(11分)阅读资料:
如图1,在平面之间坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x1,y1),由勾股定理得AB1=|x1﹣x1|1+|y1﹣y1|1,所以A,B两点间的距离为AB=.
我们知道,圆可以看成到圆心距离等于半径的点的集合,如图1,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA1=|x﹣0|1+|y﹣0|1,当⊙O的半径为r时,⊙O的方程可写为:x1+y1=r1.
问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为 .
综合应用:
如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.
①证明AB是⊙P的切点;
②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙O的方程;若不存在,说明理由.
24.(10分)为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.
(1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是 ;
(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.
九宫格
25.(10分)某渔业养殖场,对每天打捞上来的鱼,一部分由工人运到集贸市场按10元/斤销售,剩下的全部按3元/斤的购销合同直接包销给外面的某公司:养殖场共有30名工人,每名工人只能参与打捞与到集贸市场销售中的一项工作,且每人每天可以打捞鱼100斤或销售鱼50斤,设安排x名员工负责打捞,剩下的负责到市场销售.
(1)若养殖场一天的总销售收入为y元,求y与x的函数关系式;
(2)若合同要求每天销售给外面某公司的鱼至少200斤,在遵守合同的前提下,问如何分配工人,才能使一天的销售收入最大?并求出最大值.
26.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.
(1)求此抛物线的解析式及顶点D的坐标;
(2)点M是抛物线上的动点,设点M的横坐标为m.
①当∠MBA=∠BDE时,求点M的坐标;
②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.
27.(12分)如图,AB是⊙O的直径,AC是⊙O的切线,BC与⊙O相交于点D,点E在⊙O上,且DE=DA,AE与BC交于点F.
(1)求证:FD=CD;
(2)若AE=8,tan∠E=,求⊙O的半径.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD的值.
【详解】
∵CD是AB边上的中线,
∴CD=AD,
∴∠A=∠ACD,
∵∠ACB=90°,BC=6,AC=8,
∴tan∠A=,
∴tan∠ACD的值.
故选D.
【点睛】
本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.
2、D
【解析】
试题分析:根据轴对称图形和中心对称图形的概念,可知:
A既不是轴对称图形,也不是中心对称图形,故不正确;
B不是轴对称图形,但是中心对称图形,故不正确;
C是轴对称图形,但不是中心对称图形,故不正确;
D即是轴对称图形,也是中心对称图形,故正确.
故选D.
考点:轴对称图形和中心对称图形识别
3、B
【解析】
解:∵由作法可知直线l是线段AB的垂直平分线,
∴AC=BC,
∴∠CAB=∠CBA=25°,
∴∠BCM=∠CAB+∠CBA=25°+25°=50°.
故选B.
4、A
【解析】
根据图形,结合题目所给的运算法则列出方程组.
【详解】
图2所示的算筹图我们可以表述为:.
故选A.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.
5、B
【解析】
根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.
【详解】
解:∵△ABC绕点A顺时针旋转 60°得到△AED,
∴AB=AE,∠BAE=60°,
∴△AEB是等边三角形,
∴BE=AB,
∵AB=1,
∴BE=1.
故选B.
【点睛】
本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.
6、A
【解析】
分析:根据从上面看得到的图形是俯视图,可得答案.
详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,
故选:A.
点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.
7、C
【解析】
先求出x=7时y的值,再将x=4、y=-1代入y=2x+b可得答案.
【详解】
∵当x=7时,y=6-7=-1,
∴当x=4时,y=2×4+b=-1,
解得:b=-9,
故选C.
【点睛】
本题主要考查函数值,解题的关键是掌握函数值的计算方法.
8、C
【解析】
分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,在数轴上表示时由包括该数用实心点、不包括该数用空心点判断即可.
【详解】
解:解不等式﹣x+7<x+3得:x>2,
解不等式3x﹣5≤7得:x≤4,
∴不等式组的解集为:2<x≤4,
故选:C.
【点睛】
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
9、C
【解析】
分析:由表提供的信息可知,一组数据的众数是这组数中出现次数最多的数,而中位数则是将这组数据从小到大(或从大到小)依次排列时,处在最中间位置的数,据此可知这组数据的众数,中位数.
详解:根据右图提供的信息,捐款金额的众数和中位数分别是30,30.
故选C.
点睛:考查众数和中位数的概念,熟记概念是解题的关键.
10、C
【解析】
俯视图是从上面所看到的图形,可根据各几何体的特点进行判断.
【详解】
A.圆锥的俯视图是圆,中间有一点,故本选项不符合题意,
B.几何体的俯视图是长方形,故本选项不符合题意,
C.三棱柱的俯视图是三角形,故本选项符合题意,
D.圆台的俯视图是圆环,故本选项不符合题意,
故选C.
【点睛】
此题主要考查了由几何体判断三视图,正确把握观察角度是解题关键.
11、D
【解析】
如图:
∵AB=5,, ∴D=4, ∵, ∴,∴AC=4,
∵在RT△AD中,D,AD=8, ∴A=,故答案为D.
12、D
【解析】
解:设动车速度为每小时x千米,则可列方程为:﹣=.故选D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、-1.
【解析】
观察规律即可解题.
【详解】
解:第一行=12=1,第二行=22=4,第三行=32=9...
∴第n行=n2,第11行=112=121,
又∵左起第一个数比右侧的数大一,
∴第11行左起第一个数是-1.
【点睛】
本题是一道规律题,属于简单题,认真审题找到规律是解题关键.
14、x≠1.
【解析】
该函数是分式,分式有意义的条件是分母不等于0,故分母x-1≠0,解得x的范围.
【详解】
根据题意得:x−1≠0,
解得:x≠1.
故答案为x≠1.
【点睛】
本题考查了函数自变量的取值范围,解题的关键是熟练的掌握分式的意义.
15、4
【解析】
已知弧长即已知围成的圆锥的底面半径的长是6πcm,这样就求出底面圆的半径.扇形的半径为5cm就是圆锥的母线长是5cm.就可以根据勾股定理求出圆锥的高.
【详解】
设底面圆的半径是r,则2πr=6π,
∴r=3cm,
∴圆锥的高==4cm.
故答案为4.
16、(,)或(﹣,﹣).
【解析】
分点A、B、C的对应点在第一象限和第三象限两种情况,根据位似变换和正方形的性质解答可得.
【详解】
如图,
①当点A、B、C的对应点在第一象限时,
由位似比为1:2知点A′(0,)、B′(,0)、C′(,),
∴该正方形的中心点的P的坐标为(,);
②当点A、B、C的对应点在第三象限时,
由位似比为1:2知点A″(0,-)、B″(-,0)、C″(-,-),
∴此时新正方形的中心点Q的坐标为(-,-),
故答案为(,)或(-,-).
【点睛】
本题主要考查位似变换,解题的关键是熟练掌握位似变换的性质和正方形的性质.
17、1.
【解析】
由三角形BCD为直角三角形,根据已知面积与BD的长求出CD的长,由OC+CD求出OD的长,确定出B的坐标,代入反比例解析式求出k的值,利用反比例函数k的几何意义求出三角形AOC面积即可.
【详解】
∵BD⊥CD,BD=2,
∴S△BCD=BD•CD=2,
即CD=2.
∵C(2,0),
即OC=2,
∴OD=OC+CD=2+2=1,
∴B(1,2),代入反比例解析式得:k=10,
即y=,
则S△AOC=1.
故答案为1.
【点睛】
本题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解答本题的关键.
18、
【解析】
分析:解出不等式组的解集,然后根据解集的取值范围来确定m的取值范围.
解答:解:由1-x≤2得x≥-1又∵x>m
根据同大取大的原则可知:
若不等式组的解集为x≥-1时,则m≤-1
若不等式组的解集为x≥m时,则m≥-1.
故填m≤-1或m≥-1.
点评:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集再利用不等式组的解集的确定原则来确定未知数的取值范围.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)C(2,-1),A(1,0);(2)①3,②0<t<1,③(+2,1)或(-+2,1)或(-1,0)
【解析】
(1)令y=0得:x2-1x+3=0,然后求得方程的解,从而可得到A、B的坐标,然后再求得抛物线的对称轴为x=2,最后将x=2代入可求得点C的纵坐标;
(2)①抛物线与y轴交点坐标为(0,3),然后做出直线y=3,然后找出交点个数即可;②将y=3代入抛物线的解析式求得对应的x的值,从而可得到直线y=3与“L双抛图形”恰好有3个交点时t的取值,然后结合函数图象可得到“L双抛图形”与直线y=3恰好有两个交点时t的取值范围;③首先证明四边形ACQP为平行四边形,由可得到点P的纵坐标为1,然后由函数解析式可求得点P的横坐标.
【详解】
(1)令y=0得:x2-1x+3=0,解得:x=1或x=3,
∴A(1,0),B(3,0),
∴抛物线的对称轴为x=2,
将x=2代入抛物线的解析式得:y=-1,
∴C(2,-1);
(2)①将x=0代入抛物线的解析式得:y=3,
∴抛物线与y轴交点坐标为(0,3),
如图所示:作直线y=3,
由图象可知:直线y=3与“L双抛图形”有3个交点,
故答案为3;
②将y=3代入得:x2-1x+3=3,解得:x=0或x=1,
由函数图象可知:当0<t<1时,抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,
故答案为0<t<1.
③如图2所示:
∵PQ∥AC且PQ=AC,
∴四边形ACQP为平行四边形,
又∵点C的纵坐标为-1,
∴点P的纵坐标为1,
将y=1代入抛物线的解析式得:x2-1x+3=1,解得:x=+2或x=-+2.
∴点P的坐标为(+2,1)或(-+2,1),
当点P(-1,0)时,也满足条件.
综上所述,满足条件的点(+2,1)或(-+2,1)或(-1,0)
【点睛】
本题主要考查的是二次函数的综合应用,解答本题需要同学们理解“L双抛图形”的定义,数形结合以及方程思想的应用是解题的关键.
20、(1)83,81;(2),推荐甲去参加比赛.
【解析】
(1)根据中位数和众数分别求解可得;
(2)先计算出甲的平均数和方差,再根据方差的意义判别即可得.
【详解】
(1)甲成绩的中位数是83分,乙成绩的众数是81分,
故答案为:83分、81分;
(2),
∴.
∵,,
∴推荐甲去参加比赛.
【点睛】
此题主要考查了方差、平均数、众数、中位数等统计量,其中方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
21、
【解析】
先找出a,b,c,再求出b2-4ac=28,根据公式即可求出答案.
【详解】
解:x= =
即
∴原方程的解为.
【点睛】
本题考查对解一元二次方程-提公因式法、公式法,因式分解法等知识点的理解和掌握,能熟练地运用公式法解一元二次方程是解此题的关键.
22、详见解析.
【解析】
根据矩形性质推出BC=AD=AE,AD∥BC,根据平行线性质推出∠DAE=∠AEB,根据AAS证出△ABE≌△DFA即可.
【详解】
证明:在矩形ABCD中
∵BC=AD,AD∥BC,∠B=90°,
∴∠DAF=∠AEB,
∵DF⊥AE,AE=BC=AD,
∴∠AFD=∠B=90°,
在△ABE和△DFA中
∵ ∠AFD=∠B,∠DAF=∠AEB ,AE=AD
∴△ABE≌△DFA(AAS),
∴AB=DF.
【点睛】
本题考查的知识点有矩形的性质,全等三角形的判定与性质,平行线的性质.解决本题的关键在于能够找到证明三角形全等的有关条件.
23、问题拓展:(x﹣a)1+(y﹣b)1=r1综合应用:①见解析②点Q的坐标为(4,3),方程为(x﹣4)1+(y﹣3)1=15.
【解析】
试题分析:问题拓展:设A(x,y)为⊙P上任意一点,则有AP=r,根据阅读材料中的两点之间距离公式即可求出⊙P的方程;
综合应用:①由PO=PA,PD⊥OA可得∠OPD=∠APD,从而可证到△POB≌△PAB,则有∠POB=∠PAB.由⊙P与x轴相切于原点O可得∠POB=90°,即可得到∠PAB=90°,由此可得AB是⊙P的切线;
②当点Q在线段BP中点时,根据直角三角形斜边上的中线等于斜边的一半可得QO=QP=BQ=AQ.易证∠OBP=∠POA,则有tan∠OBP==.由P点坐标可求出OP、OB.过点Q作QH⊥OB于H,易证△BHQ∽△BOP,根据相似三角形的性质可求出QH、BH,进而求出OH,就可得到点Q的坐标,然后运用问题拓展中的结论就可解决问题.
试题解析:解:问题拓展:设A(x,y)为⊙P上任意一点,
∵P(a,b),半径为r,
∴AP1=(x﹣a)1+(y﹣b)1=r1.
故答案为(x﹣a)1+(y﹣b)1=r1;
综合应用:
①∵PO=PA,PD⊥OA,
∴∠OPD=∠APD.
在△POB和△PAB中,
,
∴△POB≌△PAB,
∴∠POB=∠PAB.
∵⊙P与x轴相切于原点O,
∴∠POB=90°,
∴∠PAB=90°,
∴AB是⊙P的切线;
②存在到四点O,P,A,B距离都相等的点Q.
当点Q在线段BP中点时,
∵∠POB=∠PAB=90°,
∴QO=QP=BQ=AQ.
此时点Q到四点O,P,A,B距离都相等.
∵∠POB=90°,OA⊥PB,
∴∠OBP=90°﹣∠DOB=∠POA,
∴tan∠OBP==tan∠POA=.
∵P点坐标为(0,6),
∴OP=6,OB=OP=3.
过点Q作QH⊥OB于H,如图3,
则有∠QHB=∠POB=90°,
∴QH∥PO,
∴△BHQ∽△BOP,
∴===,
∴QH=OP=3,BH=OB=4,
∴OH=3﹣4=4,
∴点Q的坐标为(4,3),
∴OQ==5,
∴以Q为圆心,以OQ为半径的⊙O的方程为(x﹣4)1+(y﹣3)1=15.
考点:圆的综合题;全等三角形的判定与性质;等腰三角形的性质;直角三角形斜边上的中线;勾股定理;切线的判定与性质;相似三角形的判定与性质;锐角三角函数的定义.
24、(1);(2)
【解析】
试题分析:(1)利用概率公式直接计算即可;
(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.
试题解析:
(1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=,故答案为;
(2)画树形图得:
由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.
考点:列表法与树状图法;概率公式.
25、(1)y=﹣50x+10500;(2)安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.
【解析】
(1)根据题意可以得到y关于x的函数解析式,本题得以解决;
(2)根据题意可以得到x的不等式组,从而可以求得x的取值范围,从而可以得到y的最大值,本题得以解决.
【详解】
(1)由题意可得,
y=10×50(30﹣x)+3[100x﹣50(30﹣x)]=﹣50x+10500,
即y与x的函数关系式为y=﹣50x+10500;
(2)由题意可得,,得x,
∵x是整数,y=﹣50x+10500,
∴当x=12时,y取得最大值,此时,y=﹣50×12+10500=9900,30﹣x=18,
答:安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.
【点睛】
本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.
26、(1)(1,4)(2)①点M坐标(﹣,)或(﹣,﹣);②m的值为 或
【解析】
(1)利用待定系数法即可解决问题;
(2)①根据tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题.
【详解】
解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,
得到,解得,
∴抛物线的解析式为y=﹣x2+2x+3,
∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,
∴顶点D坐标(1,4);
(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),
∴MG=|﹣m2+2m+3|,BG=3﹣m,
∴tan∠MBA=,
∵DE⊥x轴,D(1,4),
∴∠DEB=90°,DE=4,OE=1,
∵B(3,0),
∴BE=2,
∴tan∠BDE==,
∵∠MBA=∠BDE,
∴=,
当点M在x轴上方时, =,
解得m=﹣或3(舍弃),
∴M(﹣,),
当点M在x轴下方时, =,
解得m=﹣或m=3(舍弃),
∴点M(﹣,﹣),
综上所述,满足条件的点M坐标(﹣,)或(﹣,﹣);
②如图中,∵MN∥x轴,
∴点M、N关于抛物线的对称轴对称,
∵四边形MPNQ是正方形,
∴点P是抛物线的对称轴与x轴的交点,即OP=1,
易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,
当﹣m2+2m+3=1﹣m时,解得m=,
当﹣m2+2m+3=m﹣1时,解得m=,
∴满足条件的m的值为或.
【点睛】
本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
27、(1)证明见解析;(2);
【解析】
(1)先利用切线的性质得出∠CAD+∠BAD=90°,再利用直径所对的圆周角是直角得出∠B+∠BAD=90°,从而可证明∠B=∠EAD,进而得出∠EAD=∠CAD,进而判断出△ADF≌△ADC,即可得出结论;(2)过点D作DG⊥AE,垂足为G.依据等腰三角形的性质可得到EG=AG=1,然后在Rt△GEG中,依据锐角三角函数的定义可得到DG的长,然后依据勾股定理可得到AD=ED=2,然后在Rt△ABD中,依据锐角三角函数的定义可求得AB的长,从而可求得⊙O的半径的长.
【详解】
(1)∵AC 是⊙O 的切线,
∴BA⊥AC,
∴∠CAD+∠BAD=90°,
∵AB 是⊙O 的直径,
∴∠ADB=90°,
∴∠B+∠BAD=90°,
∴∠CAD=∠B,
∵DA=DE,
∴∠EAD=∠E,
又∵∠B=∠E,
∴∠B=∠EAD,
∴∠EAD=∠CAD,
在△ADF和△ADC中,∠ADF=∠ADC=90°,AD=AD,∠FAD=∠CAD,
∴△ADF≌△ADC,
∴FD=CD.
(2)如下图所示:过点D作DG⊥AE,垂足为G.
∵DE=AE,DG⊥AE,
∴EG=AG=AE=1.
∵tan∠E=,
∴=,即=,解得DG=1.
∴ED==2.
∵∠B=∠E,tan∠E=,
∴sin∠B=,即,解得AB=.
∴⊙O的半径为.
【点睛】
本题考查了切线的性质,圆周角定理,圆的性质,全等三角形的判定和性质,利用等式的性质 和同角的余角相等判断角相等是解本题的关键.
湖北省华中学师大一附中2021-2022学年中考数学最后一模试卷含解析: 这是一份湖北省华中学师大一附中2021-2022学年中考数学最后一模试卷含解析,共20页。试卷主要包含了的绝对值是,方程x,下列各式正确的是等内容,欢迎下载使用。
湖北省潜江市2021-2022学年中考数学最后一模试卷含解析: 这是一份湖北省潜江市2021-2022学年中考数学最后一模试卷含解析,共21页。试卷主要包含了已知,下列计算正确的是等内容,欢迎下载使用。
湖北省麻城市2021-2022学年中考数学最后一模试卷含解析: 这是一份湖北省麻城市2021-2022学年中考数学最后一模试卷含解析,共21页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。