2021-2022学年陕西省靖边县中考三模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.关于的一元二次方程有两个不相等的实数根,则的取值范围为( )
A. B. C. D.
2.如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则∠BCD的度数为( )
A.100° B.80° C.50° D.20°
3.-3的相反数是( )
A. B.3 C. D.-3
4.如图,等腰直角三角板ABC的斜边AB与量角器的直径重合,点D是量角器上60°刻度线的外端点,连接CD交AB于点E,则∠CEB的度数为( )
A.60° B.65° C.70° D.75°
5.下列各数:1.414,,﹣,0,其中是无理数的为( )
A.1.414 B. C.﹣ D.0
6.给出下列各数式,① ② ③ ④ 计算结果为负数的有( )
A.1个 B.2个 C.3个 D.4个
7.不等式组的解集是 ( )
A.x>-1 B.x>3
C.-1<x<3 D.x<3
8.下列图形中,线段MN的长度表示点M到直线l的距离的是( )
A. B. C. D.
9.如图,在平面直角坐标系中,直线y=k1x+2(k1≠0)与x轴交于点A,与y轴交于点B,与反比例函数y=在第二象限内的图象交于点C,连接OC,若S△OBC=1,tan∠BOC=,则k2的值是( )
A.3 B.﹣ C.﹣3 D.﹣6
10.如图,共有12个大不相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分.现从其余的小正方形中任取一个涂上阴影,则能构成这个正方体的表面展开图的概率是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.对于任意非零实数a、b,定义运算“”,使下列式子成立:,,,,…,则ab= .
12.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是
13.如图△ABC中,AB=AC=8,∠BAC=30°,现将△ABC绕点A逆时针旋转30°得到△ACD,延长AD、BC交于点E,则DE的长是_____.
14.如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是________.
15.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.
16.空气质量指数,简称AQI,如果AQI在0~50空气质量类别为优,在51~100空气质量类别为良,在101~150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示.已知每天的AQI都是整数,那么空气质量类别为优和良的天数共占总天数的百分比为______%.
三、解答题(共8题,共72分)
17.(8分)如图,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C上y轴上,点B在反比例函数y=(k>0,x>0)的图象上,点E从原点O出发,以每秒1个单位长度的速度向x轴正方向运动,过点E作x的垂线,交反比例函数y=(k>0,x>0)的图象于点P,过点P作PF⊥y轴于点F;记矩形OEPF和正方形OABC不重合部分的面积为S,点E的运动时间为t秒.
(1)求该反比例函数的解析式.
(2)求S与t的函数关系式;并求当S=时,对应的t值.
(3)在点E的运动过程中,是否存在一个t值,使△FBO为等腰三角形?若有,有几个,写出t值.
18.(8分)太原市志愿者服务平台旨在弘扬“奉献、关爱、互助、进步”的志愿服务精神,培育志思服务文化,推动太原市志愿服务的制度化、常态化,弘扬社会正能量,截止到2018年5月9日16:00,在该平台注册的志愿组织数达2678个,志愿者人数达247951人,组织志愿活动19748次,累计志愿服务时间3889241小时,学校为了解共青团员志愿服务情况,调查小组根据平台数据进行了抽样问卷调查,过程如下:
(1)收集、整理数据:
从九年级随机抽取40名共青团员,将其志愿服务时间按如下方式分组(A:0~5小时;B:5~10小时;C:10~15小时;D:15~20小时;E:20~25小时;F:25~30小时,注:每组含最小值,不含最大值)得到这40名志愿者服务时间如下:
B D E A C E D B F C D D D B E C D E E F
A F F A D C D B D F C F D E C E E E C E
并将上述数据整理在如下的频数分布表中,请你补充其中的数据:
志愿服务时间
A
B
C
D
E
F
频数
3
4
10
7
(2)描述数据:
根据上面的频数分布表,小明绘制了如下的频数直方图(图1),请将空缺的部分补充完整;
(3)分析数据:
①调查小组从八年级共青团员中随机抽取40名,将他们的志愿服务时间按(1)题的方式整理后,画出如图2的扇形统计图.请你对比八九年级的统计图,写出一个结论;
②校团委计划组织志愿服务时间不足10小时的团员参加义务劳动,根据上述信息估计九年级200名团员中参加此次义务劳动的人数约为 人;
(4)问题解决:
校团委计划组织中考志愿服务活动,共甲、乙、丙三个服务点,八年级的小颖和小文任意选择一个服务点参与志服务,求两人恰好选在同一个服务点的概率.
19.(8分)如图所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.
(1)求证:四边形ABED是菱形;
(2)若∠ABC=60°,CE=2BE,试判断△CDE的形状,并说明理由.
20.(8分)如图,已知抛物线与轴交于两点(A点在B点的左边),与轴交于点.
(1)如图1,若△ABC为直角三角形,求的值;
(2)如图1,在(1)的条件下,点在抛物线上,点在抛物线的对称轴上,若以为边,以点、、、Q为顶点的四边形是平行四边形,求点的坐标;
(3)如图2,过点作直线的平行线交抛物线于另一点,交轴于点,若﹕=1﹕1. 求的值.
21.(8分)某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?
22.(10分)在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.“从中任意抽取1个球不是红球就是白球”是 事件,“从中任意抽取1个球是黑球”是 事件;从中任意抽取1个球恰好是红球的概率是 ;学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.
23.(12分)2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批
花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多元.
(1)第一批花每束的进价是多少元.
(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?
24.如图,在正方形ABCD的外部,分别以CD,AD为底作等腰Rt△CDE、等腰Rt△DAF,连接AE、CF,交点为O.
(1)求证:△CDF≌△ADE;
(2)若AF=1,求四边形ABCO的周长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
试题分析:根据题意得△=32﹣4m>0,
解得m<.
故选B.
考点:根的判别式.
点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
2、B
【解析】
解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC∥AB,则∠4=30°+50°=80°.故选B.
点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键.
3、B
【解析】
根据相反数的定义与方法解答.
【详解】
解:-3的相反数为.
故选:B.
【点睛】
本题考查相反数的定义与求法,熟练掌握方法是关键.
4、D
【解析】
解:连接OD
∵∠AOD=60°,
∴ACD=30°.
∵∠CEB是△ACE的外角,
∴△CEB=∠ACD+∠CAO=30°+45°=75°
故选:D
5、B
【解析】
试题分析:根据无理数的定义可得是无理数.故答案选B.
考点:无理数的定义.
6、B
【解析】
∵①;②;③;④;
∴上述各式中计算结果为负数的有2个.
故选B.
7、B
【解析】
根据解不等式组的方法可以求得原不等式组的解集.
【详解】
,
解不等式①,得x>-1,
解不等式②,得x>1,
由①②可得,x>1,
故原不等式组的解集是x>1.
故选B.
【点睛】
本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.
8、A
【解析】
解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;
图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.
9、C
【解析】
如图,作CH⊥y轴于H.通过解直角三角形求出点C坐标即可解决问题.
【详解】
解:如图,作CH⊥y轴于H.
由题意B(0,2),
∵
∴CH=1,
∵tan∠BOC=
∴OH=3,
∴C(﹣1,3),
把点C(﹣1,3)代入,得到k2=﹣3,
故选C.
【点睛】
本题考查反比例函数于一次函数的交点问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
10、D
【解析】
由正方体表面展开图的形状可知,此正方体还缺一个上盖,故应在图中四块相连的空白正方形中选一块,再根据概率公式解答即可.
【详解】
因为共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,所以剩下7个小正方形.
在其余的7个小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的小正方形有4个,因此先从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是.
故选D.
【点睛】
本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比,掌握概率公式是本题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
试题分析:根据已知数字等式得出变化规律,即可得出答案:
∵,,,,…,
∴。
12、k≥,且k≠1
【解析】
试题解析:∵a=k,b=2(k+1),c=k-1,
∴△=4(k+1)2-4×k×(k-1)=3k+1≥1,
解得:k≥-,
∵原方程是一元二次方程,
∴k≠1.
考点:根的判别式.
13、
【解析】
过点作于,根据三角形的性质及三角形内角和定理可计算
再由旋转可得,,根据三角形外角和性质计算,根据含角的直角三角形的三边关系得和的长度,进而得到的长度,然后利用得到与的长度,于是可得.
【详解】
如图,过点作于,
∵,
∴.
∵将绕点逆时针旋转,使点落在点处,此时点落在点处,
∴
∵
∴
在中,∵
∴
∴,
在中,∵,
∴,
∴.
故答案为.
【点睛】
本题考查三角形性质的综合应用,要熟练掌握等腰三角形的性质,含角的直角三角形的三边关系,旋转图形的性质.
14、.
【解析】
试题解析:如图,连接OM交AB于点C,连接OA、OB,
由题意知,OM⊥AB,且OC=MC=1,
在RT△AOC中,∵OA=2,OC=1,
∴cos∠AOC=,AC=
∴∠AOC=60°,AB=2AC=2,
∴∠AOB=2∠AOC=120°,
则S弓形ABM=S扇形OAB-S△AOB
=
=,
S阴影=S半圆-2S弓形ABM
=π×22-2()
=2.
故答案为2.
15、1
【解析】
主视图、左视图是分别从物体正面、左面看,所得到的图形.
【详解】
易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有1个正方体.
故答案为1.
16、80
【解析】
【分析】先求出AQI在0~50的频数,再根据%,求出百分比.
【详解】由图可知AQI在0~50的频数为10,
所以,空气质量类别为优和良的天数共占总天数的百分比为:%=80%..
故答案为80
【点睛】本题考核知识点:数据的分析.解题关键点:从统计图获取信息,熟记百分比计算方法.
三、解答题(共8题,共72分)
17、(1)y=(x>0);(2)S与t的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);当S=时,对应的t值为或6;(3)当t=或或3时,使△FBO为等腰三角形.
【解析】
(1)由正方形OABC的面积为9,可得点B的坐标为:(3,3),继而可求得该反比例函数的解析式.
(2)由题意得P(t,),然后分别从当点P1在点B的左侧时,S=t•(-3)=-3t+9与当点P2在点B的右侧时,则S=(t-3)•=9-去分析求解即可求得答案;
(3)分别从OB=BF,OB=OF,OF=BF去分析求解即可求得答案.
【详解】
解:(1)∵正方形OABC的面积为9,
∴点B的坐标为:(3,3),
∵点B在反比例函数y=(k>0,x>0)的图象上,
∴3=,
即k=9,
∴该反比例函数的解析式为:y= y=(x>0);
(2)根据题意得:P(t,),
分两种情况:①当点P1在点B的左侧时,S=t•(﹣3)=﹣3t+9(0≤t≤3);
若S=,
则﹣3t+9=,
解得:t=;
②当点P2在点B的右侧时,则S=(t﹣3)•=9﹣;
若S=,则9﹣=,
解得:t=6;
∴S与t的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);
当S=时,对应的t值为或6;
(3)存在.
若OB=BF=3,此时CF=BC=3,
∴OF=6,
∴6=,
解得:t=;
若OB=OF=3,则3=,
解得:t= ;
若BF=OF,此时点F与C重合,t=3;
∴当t=或或3时,使△FBO为等腰三角形.
【点睛】
此题考查反比例函数的性质、待定系数法求函数的解析式以及等腰三角形的性质.此题难度较大,解题关键是注意掌握数形结合思想、分类讨论思想与方程思想的应用.
18、(1)7,9;(2)见解析;(3)①在15~20小时的人数最多;②35;(4).
【解析】
(1)观察统计图即可得解;
(2)根据题意作图;
(3)①根据两个统计图解答即可;
②根据图1先算出不足10小时的概率再乘以200人即可;
(4)根据题意画出树状图即可解答.
【详解】
解:(1)C的频数为7,E的频数为9;
故答案为7,9;
(2)补全频数直方图为:
(3)①八九年级共青团员志愿服务时间在15~20小时的人数最多;
②200×=35,
所以估计九年级200名团员中参加此次义务劳动的人数约为35人;
故答案为35;
(4)画树状图为:
共有9种等可能的结果数,其中两人恰好选在同一个服务点的结果数为3,
所以两人恰好选在同一个服务点的概率==.
【点睛】
本题考查了条形统计图与扇形统计图与树状图法,解题的关键是熟练的掌握条形统计图与扇形统计图与树状图法.
19、见解析
【解析】
试题分析:(1)先证得四边形ABED是平行四边形,又AB=AD, 邻边相等的平行四边形是菱形;
(2)四边形ABED是菱形,∠ABC=60°,所以∠DEC=60°,AB=ED,又EC=2BE,EC=2DE,可得△DEC是直角三角形.
试题解析:梯形ABCD中,AD∥BC,
∴四边形ABED是平行四边形,
又AB=AD,
∴四边形ABED是菱形;
(2)∵四边形ABED是菱形,∠ABC=60°,
∴∠DEC=60°,AB=ED,
又EC=2BE,
∴EC=2DE,
∴△DEC是直角三角形,
考点:1.菱形的判定;2.直角三角形的性质;3.平行四边形的判定
20、 (1) ;(2) 和;(3)
【解析】
(1)设,,再根据根与系数的关系得到,根据勾股定理得到:、 ,根据列出方程,解方程即可;(2)求出A、B坐标,设出点Q坐标,利用平行四边形的性质,分类讨论点P坐标,利用全等的性质得出P点的横坐标后,分别代入抛物线解析式,求出P点坐标;
(3)过点作DH⊥轴于点,由::,可得::.设,可得 点坐标为,可得.设点坐标为.可证△∽△,利用相似性质列出方程整理可得到 ①,将代入抛物线上,可得②,联立①②解方程组,即可解答.
【详解】
解:设,,则是方程的两根,
∴.
∵已知抛物线与轴交于点.
∴
在△中:,在△中:,
∵△为直角三角形,由题意可知∠°,
∴,
即,
∴,
∴,
解得:,
又,
∴.
由可知:,令则,
∴,
∴.
①以为边,以点、、、Q为顶点的四边形是四边形时,
设抛物线的对称轴为 ,l与交于点,过点作⊥l,垂足为点,
即∠°∠.
∵四边形为平行四边形,
∴∥,又l∥轴,
∴∠∠=∠,
∴△≌△,
∴,
∴点的横坐标为,
∴
即点坐标为.
②当以为边,以点、、、Q为顶点的四边形是四边形时,
设抛物线的对称轴为 ,l与交于点,过点作⊥l,垂足为点,
即∠°∠.
∵四边形为平行四边形,
∴∥,又l∥轴,
∴∠∠=∠,
∴△≌△,
∴,
∴点的横坐标为,
∴
即点坐标为
∴符合条件的点坐标为和.
过点作DH⊥轴于点,
∵::,
∴::.
设,则点坐标为,
∴.
∵点在抛物线上,
∴点坐标为,
由(1)知,
∴,
∵∥,
∴△∽△,
∴,
∴,
即①,
又在抛物线上,
∴②,
将②代入①得:,
解得(舍去),
把代入②得:.
【点睛】
本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.
21、自行车速度为16千米/小时,汽车速度为40千米/小时.
【解析】
设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,根据甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果同时到达,即可列方程求解.
【详解】
设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,由题意得
,
解得x=16,
经检验x=16适合题意,
2.5x=40,
答:自行车速度为16千米/小时,汽车速度为40千米/小时.
22、(1)必然,不可能;(2);(3)此游戏不公平.
【解析】
(1)直接利用必然事件以及怒不可能事件的定义分别分析得出答案;
(2)直接利用概率公式求出答案;
(3)首先画出树状图,进而利用概率公式求出答案.
【详解】
(1)“从中任意抽取1个球不是红球就是白球”是必然事件,“从中任意抽取1个球是黑球”是不可能事件;
故答案为必然,不可能;
(2)从中任意抽取1个球恰好是红球的概率是:;
故答案为;
(3)如图所示:
,
由树状图可得:一共有20种可能,两球同色的有8种情况,故选择甲的概率为:;
则选择乙的概率为:,
故此游戏不公平.
【点睛】
此题主要考查了游戏公平性,正确列出树状图是解题关键.
23、(1)2元;(2)第二批花的售价至少为元;
【解析】
(1)设第一批花每束的进价是x元,则第二批花每束的进价是(x+0.5)元,根据数量=总价÷单价结合第二批所购花的数量是第一批所购花数的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)由第二批花的进价比第一批的进价多0.5元可求出第二批花的进价,设第二批菊花的售价为m元,根据利润=每束花的利润×数量结合总利润不低于1500元,即可得出关于m的一元一次不等式,解之即可得出结论.
【详解】
(1)设第一批花每束的进价是x元,则第二批花每束的进价是元,
根据题意得:,
解得:,
经检验:是原方程的解,且符合题意.
答:第一批花每束的进价是2元.
(2)由可知第二批菊花的进价为元.
设第二批菊花的售价为m元,
根据题意得:,
解得:.
答:第二批花的售价至少为元.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
24、(1)详见解析;(2)
【解析】
(1)根据正方形的性质和等腰直角三角形的性质以及全等三角形的判定得出△CDF≌△ADE;
(2)连接AC,利用正方形的性质和四边形周长解答即可.
【详解】
(1)证明:∵四边形ABCD是正方形
∴CD=AD,∠ADC=90°,
∵△CDE和△DAF都是等腰直角三角形,
∴FD= AD,DE=CD,∠ADF=∠CDE=45°,
∴∠CDF=∠ADE=135°,FD=DE,
∴△CDF≌△ADE(SAS);
(2)如图,连接AC.
∵四边形ABCD是正方形,
∴∠ACD=∠DAC=45°,
∵△CDF≌△ADE,
∴∠DCF=∠DAE,
∴∠OAC=∠OCA,
∴OA=OC,
∵∠DCE=45°,
∴∠ACE=90°,
∴∠OCE=∠OEC,
∴OC=OE,
∵AF=FD=1,
∴AD=AB=BC=,
∴AC=2,
∴OA+OC=OA+OE=AE= ,
∴四边形ABCO的周长AB+BC+OA+OC= .
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的性质,难点在于(2)作辅助线构造出全等三角形.
2024年陕西省榆林市靖边县中考二模数学试题(原卷版+解析版): 这是一份2024年陕西省榆林市靖边县中考二模数学试题(原卷版+解析版),文件包含2024年陕西省榆林市靖边县中考二模数学试题原卷版docx、2024年陕西省榆林市靖边县中考二模数学试题解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
2023年陕西省榆林市靖边县中考数学二模试卷(含解析): 这是一份2023年陕西省榆林市靖边县中考数学二模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年陕西省榆林市靖边县中考二模数学试题(含答案): 这是一份2023年陕西省榆林市靖边县中考二模数学试题(含答案),共14页。试卷主要包含了本试卷分为第一部分,领到试卷和答题卡后,请用0,如图,是__________等内容,欢迎下载使用。