|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年陕西省汉中学市实验中学中考三模数学试题含解析
    立即下载
    加入资料篮
    2021-2022学年陕西省汉中学市实验中学中考三模数学试题含解析01
    2021-2022学年陕西省汉中学市实验中学中考三模数学试题含解析02
    2021-2022学年陕西省汉中学市实验中学中考三模数学试题含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年陕西省汉中学市实验中学中考三模数学试题含解析

    展开
    这是一份2021-2022学年陕西省汉中学市实验中学中考三模数学试题含解析,共23页。试卷主要包含了下列各式,在平面直角坐标系中,已知点A等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.

    说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.
    根据上述信息,下列结论中错误的是(  )
    A.2017年第二季度环比有所提高
    B.2017年第三季度环比有所提高
    C.2018年第一季度同比有所提高
    D.2018年第四季度同比有所提高
    2.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是(  )
    A.a=﹣2 B.a= C.a=1 D.a=
    3.下列四个多项式,能因式分解的是(  )
    A.a-1 B.a2+1
    C.x2-4y D.x2-6x+9
    4.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;
    Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.
    如图是按上述要求排乱顺序的尺规作图:

    则正确的配对是(  )
    A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣Ⅰ
    C.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
    5.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作弧AC、弧CB、弧BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形.设点I为对称轴的交点,如图2,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是(  )

    A.18π B.27π C.π D.45π
    6.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为(  )
    A.0.21×108 B.21×106 C.2.1×107 D.2.1×106
    7.下列各式:①3+3=6;②=1;③+==2;④=2;其中错误的有( ).
    A.3个 B.2个 C.1个 D.0个
    8.下列二次根式中,与是同类二次根式的是( )
    A. B. C. D.
    9.要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是(  )
    A.两点之间的所有连线中,线段最短
    B.经过两点有一条直线,并且只有一条直线
    C.直线外一点与直线上各点连接的所有线段中,垂线段最短
    D.经过一点有且只有一条直线与已知直线垂直
    10.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是(  )
    A.(﹣2,1) B.(﹣8,4)
    C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)
    11.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为( )

    A.2πcm B.4πcm C.6πcm D.8πcm
    12.如图,在6×4的正方形网格中,△ABC的顶点均为格点,则sin∠ACB=(  )
    A. B.2 C. D.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若关于x的方程有两个相等的实数根,则m的值是_________.
    14.如图,在每个小正方形的边长为1的网格中,点A,B,C,D均在格点上,AB与CD相交于点E.
    (1)AB的长等于_____;
    (2)点F是线段DE的中点,在线段BF上有一点P,满足,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_____.

    15.下列说法正确的是_____.(请直接填写序号)
    ①“若a>b,则>.”是真命题.②六边形的内角和是其外角和的2倍.③函数y= 的自变量的取值范围是x≥﹣1.④三角形的中位线平行于第三边,并且等于第三边的一半.⑤正方形既是轴对称图形,又是中心对称图形.
    16.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=_____cm.

    17.已知:a(a+2)=1,则a2+ =_____.
    18.计算的结果是______.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,A,B,C 三个粮仓的位置如图所示,A 粮仓在 B 粮仓北偏东26°,180 千米处;C 粮仓在 B 粮仓的正东方,A 粮仓的正南方.已知 A,B两个粮仓原有存粮共 450 吨,根据灾情需要,现从 A 粮仓运出该粮仓存粮的支援 C 粮仓,从 B 粮仓运出该粮仓存粮的支援 C 粮仓,这时 A,B 两处粮仓的存粮吨数相等.(tan26°=0.44,cos26°=0.90,tan26°=0.49)
    (1)A,B 两处粮仓原有存粮各多少吨?
    (2)C 粮仓至少需要支援 200 吨粮食,问此调拨计划能满足 C 粮仓的需求吗?
    (3)由于气象条件恶劣,从 B 处出发到 C 处的车队来回都限速以每小时 35 公里的速度匀速行驶,而司机小王的汽车油箱的油量最多可行驶 4 小时,那么小王在途中是否需要加油才能安全的回到 B 地?请你说明理由.

    20.(6分)如图,点,在上,直线是的切线,.连接交于.

    (1)求证:
    (2)若,的半径为,求的长.
    21.(6分)在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.
    (1)求抛物线解析式;
    (2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MOA的面积为S.求S关于m的函数关系式,并求出当m为何值时,S有最大值,这个最大值是多少?
    (3)若点Q是直线y=﹣x上的动点,过Q做y轴的平行线交抛物线于点P,判断有几个Q能使以点P,Q,B,O为顶点的四边形是平行四边形的点,直接写出相应的点Q的坐标.

    22.(8分)关于x的一元二次方程ax2+bx+1=1.当b=a+2时,利用根的判别式判断方程根的情况;若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.
    23.(8分)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,
    求证:AB=DE

    24.(10分)如图,在△ABC中,CD⊥AB于点D,tanA=2cos∠BCD,
    (1)求证:BC=2AD;
    (2)若cosB=,AB=10,求CD的长.

    25.(10分)小雁塔位于唐长安城安仁坊(今陕西省西安市南郊)荐福寺内,又称“荐福寺塔”,建于唐景龙年间,与大雁塔同为唐长安城保留至今的重要标志.小明在学习了锐角三角函数后,想利用所学知识测量“小雁塔”的高度,小明在一栋高9.982米的建筑物底部D处测得塔顶端A的仰角为45°,接着在建筑物顶端C处测得塔顶端A的仰角为37.5°.已知AB⊥BD,CD⊥BD,请你根据题中提供的相关信息,求出“小雁塔”的高AB的长度(结果精确到1米)(参考数据:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77)

    26.(12分)在平面直角坐标系中,已知抛物线经过A(-3,0),B(0,-3),C(1,0)三点.
    (1)求抛物线的解析式;
    (2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S
    关于m的函数关系式,并求出S的最大值;
    (3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

    27.(12分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字2,3、1.
    (1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ;
    (2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据环比和同比的比较方法,验证每一个选项即可.
    【详解】
    2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正确;
    2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;
    2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C错误;
    2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D正确;
    故选C.
    【点睛】
    本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键.
    2、A
    【解析】
    将各选项中所给a的值代入命题“对于任意实数a, ”中验证即可作出判断.
    【详解】
    (1)当时,,此时,
    ∴当时,能说明命题“对于任意实数a, ”是假命题,故可以选A;
    (2)当时,,此时,
    ∴当时,不能说明命题“对于任意实数a, ”是假命题,故不能B;
    (3)当时,,此时,
    ∴当时,不能说明命题“对于任意实数a, ”是假命题,故不能C;
    (4)当时,,此时,
    ∴当时,不能说明命题“对于任意实数a, ”是假命题,故不能D;
    故选A.
    【点睛】
    熟知“通过举反例说明一个命题是假命题的方法和求一个数的绝对值及相反数的方法”是解答本题的关键.
    3、D
    【解析】
    试题分析:利用平方差公式及完全平方公式的结构特征判断即可.
    试题解析:x2-6x+9=(x-3)2.
    故选D.
    考点:2.因式分解-运用公式法;2.因式分解-提公因式法.
    4、D
    【解析】
    【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.
    【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;
    Ⅱ、作线段的垂直平分线,观察可知图③符合;
    Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;
    Ⅳ、作角的平分线,观察可知图①符合,
    所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,
    故选D.
    【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.
    5、B
    【解析】
    先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可.
    【详解】
    如图1中,

    ∵等边△DEF的边长为2π,等边△ABC的边长为3,
    ∴S矩形AGHF=2π×3=6π,
    由题意知,AB⊥DE,AG⊥AF,
    ∴∠BAG=120°,
    ∴S扇形BAG==3π,
    ∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;
    故选B.
    【点睛】
    本题考查轨迹,弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解题的关键是判断出莱洛三角形绕等边△DEF扫过的图形.
    6、D
    【解析】
    2100000=2.1×106.
    点睛:对于一个绝对值较大的数,用科学记数法写成 的形式,其中,n是比原整数位数少1的数.
    7、A
    【解析】
    3+3=6,错误,无法计算;② =1,错误;③+==2不能计算;④=2,正确.
    故选A.
    8、C
    【解析】
    根据二次根式的性质把各个二次根式化简,根据同类二次根式的定义判断即可.
    【详解】
    A.|a|与不是同类二次根式;
    B.与不是同类二次根式;
    C.2与是同类二次根式;
    D.与不是同类二次根式.
    故选C.
    【点睛】
    本题考查了同类二次根式的定义,一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.
    9、B
    【解析】
    本题要根据过平面上的两点有且只有一条直线的性质解答.
    【详解】
    根据两点确定一条直线.
    故选:B.
    【点睛】
    本题考查了“两点确定一条直线”的公理,难度适中.
    10、D
    【解析】
    根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.
    【详解】
    ∵点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为,把△ABO缩小,
    ∴点A的对应点A′的坐标是:(-2,1)或(2,-1).
    故选D.
    【点睛】
    此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.
    11、B
    【解析】
    首先连接OC,AO,由切线的性质,可得OC⊥AB,根据已知条件可得:OA=2OC,进而求出∠AOC的度数,则圆心角∠AOB可求,根据弧长公式即可求出劣弧AB的长.
    【详解】
    解:如图,连接OC,AO,

    ∵大圆的一条弦AB与小圆相切,
    ∴OC⊥AB,
    ∵OA=6,OC=3,
    ∴OA=2OC,
    ∴∠A=30°,
    ∴∠AOC=60°,
    ∴∠AOB=120°,
    ∴劣弧AB的长= =4π,
    故选B.
    【点睛】
    本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键.
    12、C
    【解析】
    如图,由图可知BD=2、CD=1、BC=,根据sin∠BCA=可得答案.
    【详解】
    解:如图所示,

    ∵BD=2、CD=1,
    ∴BC===,
    则sin∠BCA===,
    故选C.
    【点睛】
    本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、m=-
    【解析】
    根据题意可以得到△=0,从而可以求得m的值.
    【详解】
    ∵关于x的方程有两个相等的实数根,
    ∴△=,
    解得:.
    故答案为.
    14、 见图形
    【解析】
    分析:(Ⅰ)利用勾股定理计算即可;
    (Ⅱ)连接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格点G、H,连接GH交DE于F,因为DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格点I、J,连接IJ交BD于K,因为BI∥DJ,所以BK:DK=BI:DJ=5:2,连接EK交BF于P,可证BP:PF=5:3;
    详解:(Ⅰ)AB的长==;
    (Ⅱ)由题意:连接AC、BD.易知:AC∥BD,
    可得:EC:ED=AC:BD=3:1.
    取格点G、H,连接GH交DE于F.
    ∵DG∥CH,∴FD:FC=DG:CH=5:8,可得DF=EF.
    取格点I、J,连接IJ交BD于K.
    ∵BI∥DJ,∴BK:DK=BI:DJ=5:2.
    连接EK交BF于P,可证BP:PF=5:3.

    故答案为(Ⅰ);
    (Ⅱ)由题意:连接AC、BD.
    易知:AC∥BD,可得:EC:ED=AC:BD=3:1,
    取格点G、H,连接GH交DE于F.
    因为DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.
    取格点I、J,连接IJ交BD于K.
    因为BI∥DJ,所以BK:DK=BI:DJ=5:2,
    连接EK交BF于P,可证BP:PF=5:3.
    点睛:本题考查了作图﹣应用与设计,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.
    15、②④⑤
    【解析】
    根据不等式的性质可确定①的对错,根据多边形的内外角和可确定②的对错,根据函数自变量的取值范围可确定③的对错,根据三角形中位线的性质可确定④的对错,根据正方形的性质可确定⑤的对错.
    【详解】
    ①“若a>b,当c<0时,则<,故①是假命题;
    ②六边形的内角和是其外角和的2倍,根据②真命题;
    ③函数y=的自变量的取值范围是x≥﹣1且x≠0,故③是假命题;
    ④三角形的中位线平行于第三边,并且等于第三边的一半,故④是真命题;
    ⑤正方形既是轴对称图形,又是中心对称图形,故⑤是真命题;
    故答案为②④⑤
    【点睛】
    本题考查了不等式的性质、多边形的内外角和、函数自变量的取值范围、三角形中位线的性质、正方形的性质,解答本题的关键是熟练掌握各知识点.
    16、2.1
    【解析】
    根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.
    【详解】
    ∵四边形ABCD是矩形,
    ∴∠ABC=90°,BD=AC,BO=OD,
    ∵AB=6cm,BC=8cm,
    ∴由勾股定理得:BD=AC==10(cm),
    ∴DO=1cm,
    ∵点E、F分别是AO、AD的中点,
    ∴EF=OD=2.1cm,
    故答案为2.1.
    【点评】
    本题考查了勾股定理,矩形性质,三角形中位线的应用,熟练掌握相关性质及定理是解题的关键.
    17、3
    【解析】
    先根据a(a+2)=1得出a2=1-2a,再把a2=1-2a代入a2+进行计算.
    【详解】
    a(a+2)=1得出a2=1-2a,
    a2+1-2a+= ===3.
    【点睛】
    本题考查的是代数式求解,熟练掌握代入法是解题的关键.
    18、
    【解析】
    二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.
    【详解】
    .
    【点睛】
    考点:二次根式的加减法.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)A、B 两处粮仓原有存粮分别是 270,1 吨;(2)此次调拨能满足 C 粮仓需求;(3)小王途中须加油才能安全回到 B 地.
    【解析】
    (1)由题意可知要求A,B两处粮仓原有存粮各多少吨需找等量关系,即A处存粮+B处存粮=450吨,A处存粮的五分之二=B处存粮的五分之三,据等量关系列方程组求解即可;
    (2)分别求出A处和B处支援C处的粮食,将其加起来与200吨比较即可;
    (3)由题意可知由已知可得△ABC中∠A=26°∠ACB=90°且AB=1Km,sin∠BAC=,要求BC的长,可以运用三角函数解直角三角形.
    【详解】
    (1)设A,B两处粮仓原有存粮x,y吨
    根据题意得:
    解得:x=270,y=1.
    答:A,B两处粮仓原有存粮分别是270,1吨.
    (2)A粮仓支援C粮仓的粮食是×270=162(吨),
    B粮仓支援C粮仓的粮食是×1=72(吨),
    A,B两粮仓合计共支援C粮仓粮食为162+72=234(吨).
    ∵234>200,
    ∴此次调拨能满足C粮仓需求.
    (3)如图,

    根据题意知:∠A=26°,AB=1千米,∠ACB=90°.
    在Rt△ABC中,sin∠BAC=,
    ∴BC=AB•sin∠BAC=1×0.44=79.2.
    ∵此车最多可行驶4×35=140(千米)<2×79.2,
    ∴小王途中须加油才能安全回到B地.
    【点睛】
    求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
    20、(1)证明见解析;(2)1.
    【解析】
    (1)连结OA,由AC为圆的切线,利用切线的性质得到∠OAC为直角,再由,得到∠BOC为直角,由OA=OB得到,再利用对顶角相等及等角的余角相等得到,利用等角对等边即可得证;
    (2)在中,利用勾股定理即可求出OC,由OC=OD+DC,DC=AC,即可求得OD的长.
    【详解】
    (1)如图,连接,
    ∵切于,
    ∴,

    又∵,
    ∴在中:
    ∵,
    ∴,
    ∴,
    又∵,
    ∴,
    ∴;

    (2)∵在中:, ,
    由勾股定理得:,
    由(1)得:,
    ∴.
    【点睛】
    此题考查了切线的性质、勾股定理、等腰三角形的判定与性质,熟练掌握切线的性质是解本题的关键.
    21、(1)y=x2+x﹣4;(2)S关于m的函数关系式为S=﹣m2﹣2m+8,当m=﹣1时,S有最大值9;(3)Q坐标为(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)时,使点P,Q,B,O为顶点的四边形是平行四边形.
    【解析】
    (1)设抛物线解析式为y= ax2 + bx + c,然后把点A、B、C的坐标代入函数解析式,利用待定系数法求解即可;
    (2)利用抛物线的解析式表示出点M的纵坐标,从而得到点M到x轴的距离,然后根据三角形面积公式表示并整理即可得解,根据抛物线的性质求出第三象限内二次函数的最值,然后即可得解;
    (3)利用直线与抛物线的解析式表示出点P、Q的坐标,然后求出PQ的长度,再根据平行四边形的对边相等列出算式,然后解关于x的一元二次方程即可得解.
    【详解】
    解:(1)设抛物线解析式为y=ax2+bx+c,
    ∵抛物线经过A(﹣4,0),B(0,﹣4),C(2,0),
    ∴,
    解得,
    ∴抛物线解析式为y=x2+x﹣4;
    (2)∵点M的横坐标为m,
    ∴点M的纵坐标为m2+m﹣4,
    又∵A(﹣4,0),
    ∴AO=0﹣(﹣4)=4,
    ∴S=×4×|m2+m﹣4|=﹣(m2+2m﹣8)=﹣m2﹣2m+8,
    ∵S=﹣(m2+2m﹣8)=﹣(m+1)2+9,点M为第三象限内抛物线上一动点,
    ∴当m=﹣1时,S有最大值,最大值为S=9;
    故答案为S关于m的函数关系式为S=﹣m2﹣2m+8,当m=﹣1时,S有最大值9;
    (3)∵点Q是直线y=﹣x上的动点,
    ∴设点Q的坐标为(a,﹣a),
    ∵点P在抛物线上,且PQ∥y轴,
    ∴点P的坐标为(a,a2+a﹣4),
    ∴PQ=﹣a﹣(a2+a﹣4)=﹣a2﹣2a+4,
    又∵OB=0﹣(﹣4)=4,
    以点P,Q,B,O为顶点的四边形是平行四边形,
    ∴|PQ|=OB,
    即|﹣a2﹣2a+4|=4,
    ①﹣a2﹣2a+4=4时,整理得,a2+4a=0,
    解得a=0(舍去)或a=﹣4,
    ﹣a=4,
    所以点Q坐标为(﹣4,4),
    ②﹣a2﹣2a+4=﹣4时,整理得,a2+4a﹣16=0,
    解得a=﹣2±2,
    所以点Q的坐标为(﹣2+2,2﹣2)或(﹣2﹣2,2+2),
    综上所述,Q坐标为(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)时,使点P,Q,B,O为顶点的四边形是平行四边形.
    【点睛】
    本题是对二次函数的综合考查有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,综合性较强,但难度不大,仔细分析便不难求解.
    22、(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x2=x2=﹣2.
    【解析】
    分析:(2)求出根的判别式,判断其范围,即可判断方程根的情况.
    (2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.
    详解:(2)解:由题意:.
    ∵,
    ∴原方程有两个不相等的实数根.
    (2)答案不唯一,满足()即可,例如:
    解:令,,则原方程为,
    解得:.
    点睛:考查一元二次方程根的判别式,
    当时,方程有两个不相等的实数根.
    当时,方程有两个相等的实数根.
    当时,方程没有实数根.
    23、证明见解析.
    【解析】
    证明:∵AC//DF ∴在和中 ∴△ABC≌△DEF(SAS)
    24、(1)证明见解析;(2)CD=2.
    【解析】
    (1)根据三角函数的概念可知tanA=,cos∠BCD=,根据tanA=2cos∠BCD即可得结论;(2)由∠B的余弦值和(1)的结论即可求得BD,利用勾股定理求得CD即可.
    【详解】
    (1)∵tanA=,cos∠BCD=,tanA=2cos∠BCD,
    ∴=2·,
    ∴BC=2AD.
    (2)∵cosB==,BC=2AD,
    ∴=.
    ∵AB=10,∴AD=×10=4,BD=10-4=6,
    ∴BC=8,∴CD==2.
    【点睛】
    本题考查了直角三角形中的有关问题,主要考查了勾股定理,三角函数的有关计算.熟练掌握三角函数的概念是解题关键.
    25、43米
    【解析】
    作CE⊥AB于E,则四边形BDCE是矩形,BE=CD=9.982米,设AB=x.根据tan∠ACE=,列出方程即可解决问题.
    【详解】
    解:如图,作CE⊥AB于E.则四边形BDCE是矩形,BE=CD=9.982米,设AB=x.

    在Rt△ABD中,∵∠ADB=45°,
    ∴AB=BD=x,
    在Rt△AEC中,
    tan∠ACE==tan37.5°≈0.77,
    ∴=0.77,
    解得x≈43,
    答:“小雁塔”的高AB的长度约为43米.
    【点睛】
    本题考查解直角三角形的应用-仰角俯角问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用构建方程的思想思考问题.
    26、(1)
    时,S最大为
    (1)(-1,1)或或或(1,-1)
    【解析】
    试题分析:(1)先假设出函数解析式,利用三点法求解函数解析式.
    (2)设出M点的坐标,利用S=S△AOM+S△OBM﹣S△AOB即可进行解答;
    (1)当OB是平行四边形的边时,表示出PQ的长,再根据平行四边形的对边相等列出方程求解即可;当OB是对角线时,由图可知点A与P应该重合,即可得出结论.
    试题解析:解:(1)设此抛物线的函数解析式为:y=ax2+bx+c(a≠0),
    将A(-1,0),B(0,-1),C(1,0)三点代入函数解析式得:
    解得,所以此函数解析式为:.
    (2)∵M点的横坐标为m,且点M在这条抛物线上,∴M点的坐标为:(m,),
    ∴S=S△AOM+S△OBM-S△AOB=×1×(-)+×1×(-m)-×1×1=-(m+)2+,
    当m=-时,S有最大值为:S=-.
    (1)设P(x,).分两种情况讨论:
    ①当OB为边时,根据平行四边形的性质知PB∥OQ,
    ∴Q的横坐标的绝对值等于P的横坐标的绝对值,
    又∵直线的解析式为y=-x,则Q(x,-x).
    由PQ=OB,得:|-x-()|=1
    解得: x=0(不合题意,舍去),-1, ,∴Q的坐标为(-1,1)或或;
    ②当BO为对角线时,如图,知A与P应该重合,OP=1.四边形PBQO为平行四边形则BQ=OP=1,Q横坐标为1,代入y=﹣x得出Q为(1,﹣1).
    综上所述:Q的坐标为:(-1,1)或或或(1,-1).

    点睛:本题是对二次函数的综合考查,有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,综合性较强,但难度不大,仔细分析便不难求解.
    27、(1);(2)这两个数字之和是3的倍数的概率为.
    【解析】
    (1)在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,根据概率公式可得;(2)用列表法列出所有情况,再计算概率.
    【详解】
    解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,
    ∴指针所指扇形中的数字是奇数的概率为,
    故答案为;
    (2)列表如下:

    1
    2
    3
    1
    (1,1)
    (2,1)
    (3,1)
    2
    (1,2)
    (2,2)
    (3,2)
    3
    (1,3)
    (2,3)
    (3,3)
    由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,
    所以这两个数字之和是3的倍数的概率为=.
    【点睛】
    本题考核知识点:求概率. 解题关键点:列出所有情况,熟记概率公式.

    相关试卷

    陕西省咸阳市实验中学2021-2022学年中考数学仿真试卷含解析: 这是一份陕西省咸阳市实验中学2021-2022学年中考数学仿真试卷含解析,共17页。试卷主要包含了如图,已知点A等内容,欢迎下载使用。

    陕西省汉中学市实验中学2022年中考数学五模试卷含解析: 这是一份陕西省汉中学市实验中学2022年中考数学五模试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,魏晋时期的数学家刘徽首创割圆术等内容,欢迎下载使用。

    2021-2022学年吉林省长春市实验中学中考数学模试卷含解析: 这是一份2021-2022学年吉林省长春市实验中学中考数学模试卷含解析,共21页。试卷主要包含了下列四个多项式,能因式分解的是,已知二次函数y=3等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map