江苏省苏州工业园区某校2021-2022学年七年级下学期期末调研数学试卷 (word版含答案)
展开2021—2022学年第二学期期末调研试卷
七年级数学
一、选择题(本大题共10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.a3·a2的结果是
A.a | B.a5 | C.a6 | D.a9 |
2.氢原子的半径约为0.000 000 000 05 m,用科学记数法表示0.000 000 000 05是
A.5×10-9 | B.0.5×10-10 | C.5×10-11 | D.5×10-12 |
3.若a>b,则下列不等式不成立的是
A.-3a>-3b B.3a>3b C.> D. a+3>b+3
4.下列因式分解正确的是( )
A.a2+b2=(a+b)2 B.a2+2ab+b2=(a﹣b)2
C.2a2﹣a=2a(a﹣1) D.a2﹣b2=(a﹣b)(a+b)
5.若△ABC≌△DEF,且∠A=60°,∠B=70°,则∠F的度数为( )
A.50° B.60° C.70° D.80°
6.若x2﹣mx+16是完全平方式,则m的值等于( )
A.2 B.4或﹣4 C.2或﹣2 D.8或﹣8
7.如图,AB∥CD,BC平分∠ABD,若∠1=65°,则∠2的度数是
A.65° | B.60° | C.55° | D.50° |
|
第7题
8.一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.设普通公路长、高速公路长分别为xkm、ykm,则可列方程组为
A.B.C.D.
9.在△ABC中,AC=5,中线AD=4,那么边AB的取值范围为( )
A.1<AB<9 B.3<AB<13 C.5<AB<13 D.9<AB<13
10. 甲,乙,丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲,乙各比赛了4局,丙当了3次裁判.问第2局的输者是( )
A.甲 B.乙 C.丙 D.不能确定
二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)
11.命题“两直线平行,内错角相等”的逆命题是▲.
12.把方程2x+y=3写成用含x的代数式表示y的形式,则y= ▲ .
13.一个三角形的三边为2、4、x,另一个三角形的三边为y、2、5,若这两个三角形全等,则x+y=▲ .
14.如图,直线a、b被直线c所截,∠1=50°.当∠2=▲ °时,a∥b.
15.关于x,y的方程组的解满足x-y=6,则m= ▲ .
16.如图,点D在AB上,点E在AC上,BE、CD相交于点O,∠A=40°,∠C=30°,
∠BOD=100°.则∠B= ▲ °.
17.如图,∠A+∠B+∠C+∠D+∠E+∠F= ▲ °.
18.若关于x的一元一次不等式组仅有2个整数解,则m的取值范围是 ▲ .
三、解答题(本大题共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
17.(6分)计算(1)(2a2)3÷(a2)2;(2)(a+b)(a-3b).
18.(6分)分解因式(1)2a(x-y)+b(y-x);(2)4a2-16a+16.
19.(5分)先化简,再求值:(a+2b)(a-2b)+(a-2b)2,其中,a=,b=1.
20.(4分)解方程组
21.(5分)解不等式组
请结合题意,完成本题的解答.
(1)解不等式①,得 ▲ .
(2)解不等式③,得 ▲ .
(3)把不等式①、②和③的解集在数轴上表示出来.
(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集▲ .
22.(5分)画图并填空:
如图,方格纸中每个小正方形的边长都为1,△ABC的顶点都在方格纸的格点上,将△ABC经过一次平移,使点C移到点C'的位置.
(1)请画出△A'B'C';
(2)连接AA'、BB',则这两条线段的关系是▲;
(3)在方格纸中,画出△ABC的中线BD和高CE;
(4)线段AB在平移过程中扫过区域的面积为▲.
23.(8分)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.
(1)求证:Rt△ABE≌Rt△CBF;
(2)若∠CAE=30°,∠BAC=45°,求∠ACF的度数.
24.(7分)为了进一步丰富校园活动,学校准备购买一批足球和篮球.购买7个足球和5个篮球的费用相同;购买40个足球和20个篮球共需3400元.
(1)求每个足球和篮球各多少元?
(2)如果学校计划购买足球和篮球共80个,总费用不超过4800元,那么最多能买多少个篮球?
25.(8分)如图,∠1,∠2,∠3,∠4是四边形ABCD的四个外角.
用两种方法证明∠1+∠2+∠3+∠4=360°.
26.(10分)数学概念
百度百科这样定义凹四边形:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形.
如图①,在四边形ABCD中,画出DC所在直线MN,边BC、AD分别在直线MN的两旁,则四边形ABCD就是凹四边形.
性质初探
(1)在图①所示的凹四边形ABCD中,求证:∠BCD=∠A+∠B+∠D.
深入研究
(2)如图②,在凹四边形ABCD中,AB与CD所在直线垂直,AD与BC所在直线垂直,∠B、∠D的角平分线相交于点E.
①求证:∠A+∠BCD=180°;
②随着∠A的变化,∠BED的大小会发生变化吗?如果有变化,请探索∠BED与∠A的数量关系;如果没有变化,请求出∠BED的度数.
七年级数学参考答案
一、选择题 (本大题共10小题,每小题2分,共20分
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
B | C | A | D | C | D | D | C | B | C |
二、填空题 (本大题共8小题,每小题2分,共16分)
11.内错角相等,两直线平行 12.y=-2x+3 13.9 14.130
15.4 16. 10 17.360 18. 3<m≤4
三、解答题(本大题共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
17.(6分)(1)原式=8a6÷a4·····································2分
=8a2·············································3分
(2)原式=a-3ab+ab-3b·····································2分
=a-2ab-3b·········································3分
18.(6分)(1)原式=2a(x-y)-b(x-y)·····························1分
=(x-y)(2a-b)··································3分
(2)原式=4(a2-4a+4)··································1分
=4(a-2)2.····································3分
19.(5分)原式=a2-4b2+a2-4ab+4b2·································2分
=2a2-4ab,············································3分
把a=,b=1代入得,原式=-··································5分
20.(4分)解:由①得y=x-3……③·································2分
把③代入②得x=2···················································3分
把x=2代入③得y=-1················································4分
所以原方程组的解为·················································5分
解法二:①×3得3x-3y=9·············································1分
①-②得5y=-5·········································2分
解得y=-1·····················································3分
把y=-1代入①得x=2················································4分
所以原方程组的解为·················································5分
21.(5分)(1)x≥-3.···········································1分
(2)x<1.·················································2分
(3)数轴表示略. (图形、描点各1分)··························4分
(4)-2<x<1·············································6分
22.(5分)(1)如图······················2分
(2)AA'∥BB'且AA'=BB'··················4分
(3)略································6分
(4)12································8分
21.(本题8分)
证明:(1)HL
(2)60°
24.(7分)(1)解:设每个足球为x元,每个篮球为y元.
·····························································2分
解得:
答:每个足球为50元,每个篮球为70元.······························4分
(2)解:设买篮球m个,则买足球(80-m)个.
70m+50(80-m)≤4800············································6分
m≤40························································7分
∵m为整数
∴m最大取40
答:最多能买40个篮球.·······················8分
25.(8分)
证法1:
∵∠1+∠BAD=180°,∠2+∠ABC=180°,∠3+∠BCD=180°,∠4+∠CDA=180° 1分
∴∠1+∠BAD+∠2+∠ABC+∠3+∠BCD+∠4+∠CDA=180°×4=720°.·····2分
∵∠BAD+∠ABC+∠BCD+∠CDA=360°,······························3分
∴∠1+∠2+∠3+∠4=360°.··········································4分
证法2:连接BD,···················································1分
∵∠1=∠ABD+∠ADB,∠3=∠CBD+∠CDB,····························2分
∴∠1+∠2+∠3+∠4=∠ABD+∠ADB+∠2+∠CBD+∠CDB+∠4,·············3分
=180°×2=360°.···································4分
26.(本题10分)
(1)证明:如图①,延长DC交AB于点E.
∵∠BEC是△AED的一个外角,
∴∠A+∠D=∠BEC.·········································1分
同理,∠B+∠BEC=∠BCD.···································2分
∴∠BCD=∠A+∠D+∠B.····································3分
(2)①证明:如图②,延长BC、DC分别交AD、AB于点F、G.
由题意可知∠AFC=∠AGC=90°.····························4分
又∵在四边形AFCG中,∠AFC+∠AGC+∠A+∠FCG=360°,
∴∠A+∠FCG=180°.····································5分
∵∠FCG=∠BCD,
∴∠A+∠BCD=180°.····································6分
②解:由(1)可知,在凹四边形ABED中,
∠A+∠ABE+∠ADE=∠BED.①·····························7分
同理,在凹四边形EBCD中,
∠BED+∠EBC+∠EDC=∠BCD.②···························8分
∵BE平分∠ABC,
∴∠ABE=∠EBC.
同理,∠ADE=∠EDC.
①-②,得∠A+∠BCD=2∠BED.····························9分
由(2)①可知,在凹四边形ABCD中,∠A+∠BCD=180°.
∴2∠BED=180°,
∴∠BED=90°.··········································10分
江苏省苏州市苏州工业园区2022-2023学年七年级下学期期末数学试卷含答案解析: 这是一份江苏省苏州市苏州工业园区2022-2023学年七年级下学期期末数学试卷含答案解析,共27页。
江苏省苏州市苏州工业园区2022-2023学年七年级下学期期末数学试卷含答案解析: 这是一份江苏省苏州市苏州工业园区2022-2023学年七年级下学期期末数学试卷含答案解析,共27页。
江苏省苏州市苏州工业园区2023-2024学年七年级上学期期末调研数学试卷: 这是一份江苏省苏州市苏州工业园区2023-2024学年七年级上学期期末调研数学试卷,文件包含江苏省苏州工业园区2023-2024学年七年级上学期期末调研数学试卷pdf、答案及解析pdf等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。