|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年黑龙江省鸡西市二中重点名校中考数学四模试卷含解析
    立即下载
    加入资料篮
    2021-2022学年黑龙江省鸡西市二中重点名校中考数学四模试卷含解析01
    2021-2022学年黑龙江省鸡西市二中重点名校中考数学四模试卷含解析02
    2021-2022学年黑龙江省鸡西市二中重点名校中考数学四模试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年黑龙江省鸡西市二中重点名校中考数学四模试卷含解析

    展开
    这是一份2021-2022学年黑龙江省鸡西市二中重点名校中考数学四模试卷含解析,共22页。试卷主要包含了若正比例函数y=mx,若点A等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图是某个几何体的展开图,该几何体是( )

    A.三棱柱 B.圆锥 C.四棱柱 D.圆柱
    2.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=-1,点B的坐标为(1,0),则下列结论:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正确的结论有(  )个.

    A.3 B.4 C.2 D.1
    3.3点40分,时钟的时针与分针的夹角为(  )
    A.140° B.130° C.120° D.110°
    4.如图,甲、乙、丙图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是( )

    A.仅有甲和乙相同 B.仅有甲和丙相同
    C.仅有乙和丙相同 D.甲、乙、丙都相同
    5.若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于(  )
    A.2 B.﹣2 C.4 D.﹣4
    6.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是( )

    A.最喜欢篮球的人数最多 B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍
    C.全班共有50名学生 D.最喜欢田径的人数占总人数的10 %
    7.若点A(a,b),B(,c)都在反比例函数y=的图象上,且﹣1<c<0,则一次函数y=(b﹣c)x+ac的大致图象是(  )
    A. B.
    C. D.
    8.如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是(  )

    A.相切 B.相交 C.相离 D.无法确定
    9.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是( )

    A.①②③ B.①②④ C.①③④ D.②③④
    10.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC.有下列结论:①abc<0;②3b+4c<0;③c>﹣1;④关于x的方程ax2+bx+c=0有一个根为﹣,其中正确的结论个数是(  )

    A.1 B.2 C.3 D.4
    11.下列事件中,必然事件是(  )
    A.抛掷一枚硬币,正面朝上
    B.打开电视,正在播放广告
    C.体育课上,小刚跑完1000米所用时间为1分钟
    D.袋中只有4个球,且都是红球,任意摸出一球是红球
    12. “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为( )
    A.567×103 B.56.7×104 C.5.67×105 D.0.567×106
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在正六边形ABCDEF中,AC于FB相交于点G,则值为_____.

    14.已知x1,x2是方程x2+6x+3=0的两实数根,则的值为_____.
    15.某校广播台要招聘一批小主持人,对A、B两名小主持人进行了专业素质、创新能力、外语水平和应变能力进行了测试,他们各项的成绩(百分制)如表所示:
    应聘者
    专业素质
    创新能力
    外语水平
    应变能力
    A
    73
    85
    78
    85
    B
    81
    82
    80
    75
    如果只招一名主持人,该选用______;依据是_____.(答案不唯一,理由支撑选项即可)
    16.已知点A(2,0),B(0,2),C(-1,m)在同一条直线上,则m的值为___________.
    17.某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100名学生进行调查,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的________(填百分数).

    18.计算:﹣|﹣2|+()﹣1=_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,B、E、C、F在同一直线上,AB=DE,BE=CF,∠B=∠DEF,求证:AC=DF.

    20.(6分)如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于对角线AC,垂足是E,连接BE.
    (1)求证:四边形ABCD是平行四边形;
    (2)若AB=BE=2,sin∠ACD= ,求四边形ABCD的面积.

    21.(6分)发现
    如图1,在有一个“凹角∠A1A2A3”n边形A1A2A3A4……An中(n为大于3的整数),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.
    验证如图2,在有一个“凹角∠ABC”的四边形ABCD中,证明:∠ABC=∠A+∠C+∠D.证明3,在有一个“凹角∠ABC”的六边形ABCDEF中,证明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.
    延伸如图4,在有两个连续“凹角A1A2A3和∠A2A3A4”的四边形A1A2A3A4……An中(n为大于4的整数),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣  )×180°.

    22.(8分)京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.若乙队单独施工,需要多少天才能完成该项工程?若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?
    23.(8分)为了了解某校学生对以下四个电视节目:A《最强大脑》,B《中国诗词大会》,C《朗读者》,D《出彩中国人》的喜爱情况,随机抽取了部分学生进行调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图.
    请你根据图中所提供的信息,完成下列问题:
    本次调查的学生人数为________;在扇形统计图中,A部分所占圆心角的度数为________;请将条形统计图补充完整:若该校共有3000名学生,估计该校最喜爱《中国诗词大会》的学生有多少名?
    24.(10分)如图,抛物线y=﹣x2+5x+n经过点A(1,0),与y轴交于点B.
    (1)求抛物线的解析式;
    (2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.

    25.(10分)如图,一位测量人员,要测量池塘的宽度 的长,他过 两点画两条相交于点 的射线,在射线上取两点 ,使 ,若测得 米,他能求出 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.

    26.(12分)如图,将矩形ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.
    (1)求证:△ABF≌△EDF;
    (2)若AB=6,BC=8,求AF的长.

    27.(12分)如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A,过点P(1,m)作直线PA⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(点B、C不重合),连接CB、CP.
    (I)当m=3时,求点A的坐标及BC的长;
    (II)当m>1时,连接CA,若CA⊥CP,求m的值;
    (III)过点P作PE⊥PC,且PE=PC,当点E落在坐标轴上时,求m的值,并确定相对应的点E的坐标.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    侧面为三个长方形,底边为三角形,故原几何体为三棱柱.
    【详解】
    解:观察图形可知,这个几何体是三棱柱.
    故选A.
    【点睛】
    本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..
    2、A
    【解析】
    利用抛物线的对称性可确定A点坐标为(-3,0),则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;由抛物线开口向下得到a>0,再利用对称轴方程得到b=2a>0,则可对③进行判断;利用x=-1时,y<0,即a-b+c<0和a>0可对④进行判断.
    【详解】
    ∵抛物线的对称轴为直线x=-1,点B的坐标为(1,0),
    ∴A(-3,0),
    ∴AB=1-(-3)=4,所以①正确;
    ∵抛物线与x轴有2个交点,
    ∴△=b2-4ac>0,所以②正确;
    ∵抛物线开口向下,
    ∴a>0,
    ∵抛物线的对称轴为直线x=-=-1,
    ∴b=2a>0,
    ∴ab>0,所以③错误;
    ∵x=-1时,y<0,
    ∴a-b+c<0,
    而a>0,
    ∴a(a-b+c)<0,所以④正确.
    故选A.
    【点睛】
    本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2-4ac决定抛物线与x轴的交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.也考查了二次函数的性质.
    3、B
    【解析】
    根据时针与分针相距的份数乘以每份的度数,可得答案.
    【详解】
    解:3点40分时针与分针相距4+=份,
    30°×=130,
    故选B.
    【点睛】
    本题考查了钟面角,确定时针与分针相距的份数是解题关键.
    4、B
    【解析】
    试题分析:根据分析可知,甲的主视图有2列,每列小正方数形数目分别为2,2;乙的主视图有2列,每列小正方数形数目分别为2,1;丙的主视图有2列,每列小正方数形数目分别为2,2;则主视图相同的是甲和丙.
    考点:由三视图判断几何体;简单组合体的三视图.
    5、B
    【解析】
    利用待定系数法求出m,再结合函数的性质即可解决问题.
    【详解】
    解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),
    ∴m2=4,
    ∴m=±2,
    ∵y的值随x值的增大而减小,
    ∴m<0,
    ∴m=﹣2,
    故选:B.
    【点睛】
    本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    6、C
    【解析】
    【分析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.
    【详解】观察直方图,由图可知:
    A. 最喜欢足球的人数最多,故A选项错误;
    B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;
    C. 全班共有12+20+8+4+6=50名学生,故C选项正确;
    D. 最喜欢田径的人数占总人数的=8 %,故D选项错误,
    故选C.
    【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.
    7、D
    【解析】
    将,代入,得,,然后分析与的正负,即可得到的大致图象.
    【详解】
    将,代入,得,,
    即,.
    ∴.
    ∵,∴,∴.
    即与异号.
    ∴.
    又∵,
    故选D.
    【点睛】
    本题考查了反比例函数图像上点的坐标特征,一次函数的图像与性质,得出与的正负是解答本题的关键.
    8、B
    【解析】
    首先过点A作AM⊥BC,根据三角形面积求出AM的长,得出直线BC与DE的距离,进而得出直线与圆的位置关系.
    【详解】
    解:过点A作AM⊥BC于点M,交DE于点N,∴AM×BC=AC×AB,∴AM===2.1.
    ∵D、E分别是AC、AB的中点,∴DE∥BC,DE=BC=2.5,∴AN=MN=AM,∴MN=1.2.
    ∵以DE为直径的圆半径为1.25,∴r=1.25>1.2,∴以DE为直径的圆与BC的位置关系是:相交.
    故选B.

    【点睛】
    本题考查了直线和圆的位置关系,利用中位线定理得出BC到圆心的距离与半径的大小关系是解题的关键.
    9、B
    【解析】
    解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:
    根据作图过程可知:PB=CP,
    ∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确.
    ∵∠ABC=90°,∴PD∥AB.
    ∴E为AC的中点,∴EC=EA,∵EB=EC.
    ∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确.
    ∴正确的有①②④.
    故选B.
    考点:线段垂直平分线的性质.
    10、B
    【解析】
    由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断①;由对称轴=2可知a=,由图象可知当x=1时,y>0,可判断②;由OA=OC,且OA<1,可判断③;把-代入方程整理可得ac2-bc+c=0,结合③可判断④;从而可得出答案.
    【详解】
    解:∵图象开口向下,∴a<0,
    ∵对称轴为直线x=2,∴>0,∴b>0,
    ∵与y轴的交点在x轴的下方,∴c<0,
    ∴abc>0,故①错误.
    ∵对称轴为直线x=2,∴=2,∴a=,
    ∵由图象可知当x=1时,y>0,
    ∴a+b+c>0,∴4a+4b+4c>0,∴4()+4b+4c>0,
    ∴3b+4c>0,故②错误.
    ∵由图象可知OA<1,且OA=OC,
    ∴OC<1,即-c<1,
    ∴c>-1,故③正确.
    ∵假设方程的一个根为x=-,把x=-代入方程可得+c=0,
    整理可得ac-b+1=0,
    两边同时乘c可得ac2-bc+c=0,
    ∴方程有一个根为x=-c,
    由③可知-c=OA,而当x=OA是方程的根,
    ∴x=-c是方程的根,即假设成立,故④正确.
    综上可知正确的结论有三个:③④.
    故选B.
    【点睛】
    本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.
    11、D
    【解析】
    试题解析:A. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;
    B. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;
    C. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;
    D. 袋中只有4个球,且都是红球,任意摸出一球是红球,是必然事件,符合题意.
    故选D.
    点睛:事件分为确定事件和不确定事件.
    必然事件和不可能事件叫做确定事件.
    12、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.
    【详解】
    567000=5.67×105,
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、.
    【解析】
    由正六边形的性质得出AB=BC=AF,∠ABC=∠BAF=120°,由等腰三角形的性质得出∠ABF=∠BAC=∠BCA=30°,证出AG=BG,∠CBG=90°,由含30°角的直角三角形的性质得出CG=2BG=2AG,即可得出答案.
    【详解】
    ∵六边形ABCDEF是正六边形,
    ∴AB=BC=AF,∠ABC=∠BAF=120°,
    ∴∠ABF=∠BAC=∠BCA=30°,
    ∴AG=BG,∠CBG=90°,
    ∴CG=2BG=2AG,
    ∴=;
    故答案为:.
    【点睛】
    本题考查了正六边形的性质、等腰三角形的判定、含30°角的直角三角形的性质等知识;熟练掌握正六边形的性质和含30°角的直角三角形的性质是解题的关键.
    14、1.
    【解析】
    试题分析:∵,是方程的两实数根,∴由韦达定理,知,,∴===1,即的值是1.故答案为1.
    考点:根与系数的关系.
    15、A A的平均成绩高于B平均成绩
    【解析】
    根据表格求出A,B的平均成绩,比较大小即可解题.
    【详解】
    解:A的平均数是80.25,B的平均数是79.5,
    ∴A比B更优秀,
    ∴如果只招一名主持人,该选用A;依据是A的平均成绩高于B平均成绩.
    【点睛】
    本题考查了平均数的实际应用,属于简单题,从表格中找到有用信息是解题关键.
    16、3
    【解析】
    设过点A(2,0)和点B(0,2)的直线的解析式为:,
    则 ,解得: ,
    ∴直线AB的解析式为:,
    ∵点C(-1,m)在直线AB上,
    ∴,即.
    故答案为3.
    点睛:在平面直角坐标系中,已知三点共线和其中两点的坐标,求第3点坐标中待定字母的值时,通常先由已知两点的坐标求出过这两点的直线的解析式,在将第3点的坐标代入所求解析式中,即可求得待定字母的值.
    17、.
    【解析】
    用被抽查的100名学生中参加社会实践活动时间在2~2.5小时之间的学生除以抽查的学生总人数,即可得解.
    【详解】
    由频数分布直方图知,2~2.5小时的人数为100﹣(8+24+30+10)=28,则该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的百分比为100%=28%.
    故答案为:28%.
    【点睛】
    本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
    18、﹣1
    【解析】
    根据立方根、绝对值及负整数指数幂等知识点解答即可.
    【详解】
    原式= -2 -2+3= -1
    【点睛】
    本题考查了实数的混合运算,解题的关键是掌握运算法则及运算顺序.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、见解析
    【解析】
    由BE=CF可得BC=EF,即可判定,再利用全等三角形的性质证明即可.
    【详解】
    ∵BE=CF,
    ∴,
    即BC=EF,
    又∵AB=DE,∠B=∠DEF,
    ∴在与中,

    ∴,
    ∴AC=DF.
    【点睛】
    本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定定理是解决本题的关键.
    20、(1)证明见解析;(2)S平行四边形ABCD =3 .
    【解析】
    试题分析:(1)根据平行四边形的性质得出∠ABC+∠DCB=180°,推出∠ADC+∠BCD=180°,根据平行线的判定得出AD∥BC,根据平行四边形的判定推出即可;
    (2)证明△ABE是等边三角形,得出AE=AB=2,由直角三角形的性质求出CE和DE,得出AC的长,即可求出四边形ABCD的面积.
    试题解析:(1)∵AB∥CD,∴∠ABC+∠DCB=180°,
    ∵∠ABC=∠ADC,∴∠ADC+∠BCD=180°,∴AD∥BC,
    ∵AB∥CD,∴四边形ABCD是平行四边形;
    (2)∵sin∠ACD=,∴∠ACD=60°,
    ∵四边形ABCD是平行四边形,∴AB∥CD,CD=AB=2,∴∠BAC=∠ACD=60°,
    ∵AB=BE=2,∴△ABE是等边三角形,∴AE=AB=2,
    ∵DE⊥AC,∴∠CDE=90°﹣60°=30°,∴CE= CD=1,∴DE=CE=,AC=AE+CE=3,
    ∴S平行四边形ABCD =2S△ACD =AC•DE=3.
    21、(1)见解析;(2)见解析;(3)1.
    【解析】
    (1)如图2,延长AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答
    (2)如图3,延长AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答
    (3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出规律即可解答
    【详解】
    (1)如图2,延长AB交CD于E,
    则∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,
    ∴∠ABC=∠A+∠C+∠D;
    (2)如图3,延长AB交CD于G,则∠ABC=∠BGC+∠C,
    ∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),
    ∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;
    (3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,
    则∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,
    ∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An),
    而∠2+∠4=310°﹣(∠1+∠3)=310°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An)],
    ∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A1……+∠An﹣(n﹣1)×180°.
    故答案为1.



    【点睛】
    此题考查多边形的内角和外角,,解题的关键是熟练掌握三角形的外角的性质,属于中考常考题型
    22、(1)乙队单独施工需要1天完成;(2)乙队至少施工l8天才能完成该项工程.
    【解析】
    (1)先求得甲队单独施工完成该项工程所需时间,设乙队单独施工需要x天完成该项工程,再根据“甲完成的工作量+乙完成的工作量=1”列方程解方程即可求解;
    (2)设乙队施工y天完成该项工程,根据题意列不等式解不等式即可.
    【详解】
    (1)由题意知,甲队单独施工完成该项工程所需时间为1÷=90(天).
    设乙队单独施工需要x天完成该项工程,则

    去分母,得x+1=2x.
    解得x=1.
    经检验x=1是原方程的解.
    答:乙队单独施工需要1天完成.
    (2)设乙队施工y天完成该项工程,则
    1-
    解得y≥2.
    答:乙队至少施工l8天才能完成该项工程.
    23、(1)120;(2)  ;(3)答案见解析;(4)1650.
    【解析】
    (1)依据节目B的数据,即可得到调查的学生人数;
    (2)依据A部分的百分比,即可得到A部分所占圆心角的度数;
    (3)求得C部分的人数,即可将条形统计图补充完整;
    (4)依据喜爱《中国诗词大会》的学生所占的百分比,即可得到该校最喜爱《中国诗词大会》的学生数量.
    【详解】

    故答案为120;

    故答案为;
    :,
    如图所示:


    答:该校最喜爱中国诗词大会的学生有1650名.
    【点睛】
    本题考查了条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.
    24、(1);(2)(0,)或(0,4).
    【解析】
    试题分析:(1)将A点的坐标代入抛物线中,即可得出二次函数的解析式;
    (2)本题要分两种情况进行讨论:①PB=AB,先根据抛物线的解析式求出B点的坐标,即可得出OB的长,进而可求出AB的长,也就知道了PB的长,由此可求出P点的坐标;
    ②PA=AB,此时P与B关于x轴对称,由此可求出P点的坐标.
    试题解析:(1)∵抛物线经过点A(1,0),∴,∴;
    (2)∵抛物线的解析式为,∴令,则,∴B点坐标(0,﹣4),AB=,
    ①当PB=AB时,PB=AB=,∴OP=PB﹣OB=.∴P(0,),
    ②当PA=AB时,P、B关于x轴对称,∴P(0,4),因此P点的坐标为(0,)或(0,4).
    考点:二次函数综合题.
    25、可以求出A、B之间的距离为111.6米.
    【解析】
    根据,(对顶角相等),即可判定,根据相似三角形的性质得到,即可求解.
    【详解】
    解:∵,(对顶角相等),
    ∴,
    ∴,
    ∴,
    解得米.
    所以,可以求出、之间的距离为米
    【点睛】
    考查相似三角形的应用,掌握相似三角形的判定方法和性质是解题的关键.
    26、(1)见解析;(2)
    【解析】
    (1)根据矩形的性质可得AB=CD,∠C=∠A=90°,再根据折叠的性质可得DE=CD,∠C=∠E=90°,然后利用“角角边”证明即可;
    (2)设AF=x,则BF=DF=8-x,根据勾股定理列方程求解即可.
    【详解】
    (1)证明:在矩形ABCD中,AB=CD,∠A=∠C=90°,
    由折叠得:DE=CD,∠C=∠E=90°,
    ∴AB=DE,∠A=∠E=90°,
    ∵∠AFB=∠EFD,
    ∴△ABF≌△EDF(AAS);
    (2)解:∵△ABF≌△EDF,
    ∴BF=DF,
    设AF=x,则BF=DF=8﹣x,
    在Rt△ABF中,由勾股定理得:
    BF2=AB2+AF2,即(8﹣x)2=x2+62,
    x=,即AF=
    【点睛】
    本题考查了翻折变换的性质,全等三角形的判定与性质,矩形的性质,勾股定理,翻折前后对应边相等,对应角相等,利用勾股定理列出方程是解题的关键.
    27、(I)4;(II) (III)(2,0)或(0,4)
    【解析】
    (I)当m=3时,抛物线解析式为y=-x2+6x,解方程-x2+6x=0得A(6,0),利用对称性得到C(5,5),从而得到BC的长;
    (II)解方程-x2+2mx=0得A(2m,0),利用对称性得到C(2m-1,2m-1),再根据勾股定理和两点间的距离公式得到(2m-2)2+(m-1)2+12+(2m-1)2=(2m-1)2+m2,然后解方程即可;
    (III)如图,利用△PME≌△CBP得到PM=BC=2m-2,ME=BP=m-1,则根据P点坐标得到2m-2=m,解得m=2,再计算出ME=1得到此时E点坐标;作PH⊥y轴于H,如图,利用△PHE′≌△PBC得到PH=PB=m-1,HE′=BC=2m-2,利用P(1,m)得到m-1=1,解得m=2,然后计算出HE′得到E′点坐标.
    【详解】
    解:(I)当m=3时,抛物线解析式为y=﹣x2+6x,
    当y=0时,﹣x2+6x=0,解得x1=0,x2=6,则A(6,0),
    抛物线的对称轴为直线x=3,
    ∵P(1,3),
    ∴B(1,5),
    ∵点B关于抛物线对称轴的对称点为C
    ∴C(5,5),
    ∴BC=5﹣1=4;
    (II)当y=0时,﹣x2+2mx=0,解得x1=0,x2=2m,则A(2m,0),
    B(1,2m﹣1),
    ∵点B关于抛物线对称轴的对称点为C,而抛物线的对称轴为直线x=m,
    ∴C(2m﹣1,2m﹣1),
    ∵PC⊥PA,
    ∴PC2+AC2=PA2,
    ∴(2m﹣2)2+(m﹣1)2+12+(2m﹣1)2=(2m﹣1)2+m2,
    整理得2m2﹣5m+3=0,解得m1=1,m2=,
    即m的值为;
    (III)如图,
    ∵PE⊥PC,PE=PC,
    ∴△PME≌△CBP,
    ∴PM=BC=2m﹣2,ME=BP=2m﹣1﹣m=m﹣1,
    而P(1,m)
    ∴2m﹣2=m,解得m=2,
    ∴ME=m﹣1=1,
    ∴E(2,0);
    作PH⊥y轴于H,如图,
    易得△PHE′≌△PBC,
    ∴PH=PB=m﹣1,HE′=BC=2m﹣2,
    而P(1,m)
    ∴m﹣1=1,解得m=2,
    ∴HE′=2m﹣2=2,
    ∴E′(0,4);
    综上所述,m的值为2,点E的坐标为(2,0)或(0,4).

    【点睛】
    本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会运用全等三角形的知识解决线段相等的问题;理解坐标与图形性质,记住两点间的距离公式.

    相关试卷

    云南省楚雄州—重点名校2021-2022学年中考数学四模试卷含解析: 这是一份云南省楚雄州—重点名校2021-2022学年中考数学四模试卷含解析,共24页。试卷主要包含了下列事件中是必然事件的是,下列说法错误的是,某同学将自己7次体育测试成绩等内容,欢迎下载使用。

    黑龙江省鸡西市达标名校2021-2022学年中考数学押题试卷含解析: 这是一份黑龙江省鸡西市达标名校2021-2022学年中考数学押题试卷含解析,共20页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    黑龙江省鸡西市达标名校2021-2022学年中考联考数学试卷含解析: 这是一份黑龙江省鸡西市达标名校2021-2022学年中考联考数学试卷含解析,共23页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map