|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年山东省蒙阴县重点名校中考数学四模试卷含解析
    立即下载
    加入资料篮
    2021-2022学年山东省蒙阴县重点名校中考数学四模试卷含解析01
    2021-2022学年山东省蒙阴县重点名校中考数学四模试卷含解析02
    2021-2022学年山东省蒙阴县重点名校中考数学四模试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年山东省蒙阴县重点名校中考数学四模试卷含解析

    展开
    这是一份2021-2022学年山东省蒙阴县重点名校中考数学四模试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,解分式方程﹣3=时,去分母可得,已知反比例函数下列结论正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,在四边形ABCD中,∠A=120°,∠C=80°.将△BMN沿着MN翻折,得到△FMN.若MF∥AD,FN∥DC,则∠F的度数为(  )

    A.70° B.80° C.90° D.100°
    2.若关于x的不等式组恰有3个整数解,则字母a的取值范围是(  )
    A.a≤﹣1 B.﹣2≤a<﹣1 C.a<﹣1 D.﹣2<a≤﹣1
    3.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )

    A.该班总人数为50 B.步行人数为30
    C.乘车人数是骑车人数的2.5倍 D.骑车人数占20%
    4.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有(  )

    A.1对 B.2对 C.3对 D.4对
    5.解分式方程﹣3=时,去分母可得(  )
    A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4
    C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=4
    6.已知反比例函数y=的图象在一、三象限,那么直线y=kx﹣k不经过第(  )象限.
    A.一 B.二 C.三 D.四
    7.如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(n)个图形中面积为1的正方形的个数为(  )

    A. B. C. D.
    8.如图,A、B、C是⊙O上的三点,∠B=75°,则∠AOC的度数是( )

    A.150° B.140° C.130° D.120°
    9.已知在四边形ABCD中,AD//BC,对角线AC、BD交于点O,且AC=BD,下列四个命题中真命题是( )
    A.若AB=CD,则四边形ABCD一定是等腰梯形;
    B.若∠DBC=∠ACB,则四边形ABCD一定是等腰梯形;
    C.若,则四边形ABCD一定是矩形;
    D.若AC⊥BD且AO=OD,则四边形ABCD一定是正方形.
    10.已知反比例函数下列结论正确的是( )
    A.图像经过点(-1,1) B.图像在第一、三象限
    C.y 随着 x 的增大而减小 D.当 x > 1时, y < 1
    二、填空题(共7小题,每小题3分,满分21分)
    11.举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中一项三次挑战失败,则该项成绩为 0,甲、乙是同一重量级别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤):

    如果你是教练,要选派一名选手参加国际比赛,那么你会选择_____(填“甲” 或“乙”),理由是___________.
    12.如果分式的值是0,那么x的值是______.
    13.因式分解:a3b﹣ab3=_____.
    14.现在网购越来越多地成为人们的一种消费方式,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为_____.
    15.计算a10÷a5=_______.
    16.如图,已知圆柱底面的周长为,圆柱高为,在圆柱的侧面上,过点和点嵌有一圈金属丝,则这圈金属丝的周长最小为______.

    17.如图,某城市的电视塔AB坐落在湖边,数学老师带领学生隔湖测量电视塔AB的高度,在点M处测得塔尖点A的仰角∠AMB为22.5°,沿射线MB方向前进200米到达湖边点N处,测得塔尖点A在湖中的倒影A′的俯角∠A′NB为45°,则电视塔AB的高度为______米(结果保留根号).

    三、解答题(共7小题,满分69分)
    18.(10分)如图①,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(﹣3,0)两点,与y轴交于点D(0,3).

    (1)求这个抛物线的解析式;
    (2)如图②,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为﹣2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;
    (3)如图③,连接AC交y轴于M,在x轴上是否存在点P,使以P、C、M为顶点的三角形与△AOM相似?若存在,求出点P的坐标;若不存在,请说明理由.
    19.(5分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(cos80°≈0.17,sin80°≈0.98,≈1.414)

    (1)此时小强头部E点与地面DK相距多少?
    (2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?
    20.(8分)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:坡顶A到地面PO的距离;古塔BC的高度(结果精确到1米).

    21.(10分)某中学九年级甲、乙两班商定举行一次远足活动,、两地相距10千米,甲班从地出发匀速步行到地,乙班从地出发匀速步行到地.两班同时出发,相向而行.设步行时间为小时,甲、乙两班离地的距离分别为千米、千米,、与的函数关系图象如图所示,根据图象解答下列问题:直接写出、与的函数关系式;求甲、乙两班学生出发后,几小时相遇?相遇时乙班离地多少千米?甲、乙两班相距4千米时所用时间是多少小时?

    22.(10分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.

    23.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
    (1)求这条抛物线的表达式;
    (2)求∠ACB的度数;
    (3)点D是抛物线上的一动点,是否存在点D,使得tan∠DCB=tan∠ACO.若存在,请求出点D的坐标,若不存在,说明理由.

    24.(14分)请你仅用无刻度的直尺在下面的图中作出△ABC 的边 AB 上的高 CD.如图①,以等边三角形 ABC 的边 AB 为直径的圆,与另两边 BC、AC 分别交于点 E、F.如图②,以钝角三角形 ABC 的一短边 AB 为直径的圆,与最长的边 AC 相交于点 E.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    首先利用平行线的性质得出∠BMF=120°,∠FNB=80°,再利用翻折变换的性质得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,进而求出∠B的度数以及得出∠F的度数.
    【详解】
    ∵MF∥AD,FN∥DC,∠A=120°,∠C=80°,
    ∴∠BMF=120°,∠FNB=80°,
    ∵将△BMN沿MN翻折得△FMN,
    ∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,
    ∴∠F=∠B=180°-60°-40°=80°,
    故选B.
    【点睛】
    主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.
    2、B
    【解析】
    根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出字母a的取值范围.
    【详解】
    解:∵x的不等式组恰有3个整数解,
    ∴整数解为1,0,-1,
    ∴-2≤a<-1.
    故选B.
    【点睛】
    本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.
    3、B
    【解析】
    根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.
    【详解】
    A、总人数是:25÷50%=50(人),故A正确;
    B、步行的人数是:50×30%=15(人),故B错误;
    C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;
    D、骑车人数所占的比例是:1-50%-30%=20%,故D正确.
    由于该题选择错误的,
    故选B.
    【点睛】
    本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    4、C
    【解析】
    ∵∠ACB=90°,CD⊥AB,
    ∴△ABC∽△ACD,
    △ACD∽CBD,
    △ABC∽CBD,
    所以有三对相似三角形.
    故选C.
    5、B
    【解析】
    方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.
    【详解】
    方程两边同时乘以(x-2),得
    1﹣3(x﹣2)=﹣4,
    故选B.
    【点睛】
    本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.
    6、B
    【解析】
    根据反比例函数的性质得k>0,然后根据一次函数的进行判断直线y=kx-k不经过的象限.
    【详解】
    ∵反比例函数y=的图象在一、三象限,
    ∴k>0,
    ∴直线y=kx﹣k经过第一、三、四象限,即不经过第二象限.
    故选:B.
    【点睛】
    考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数与一次函数的性质.
    7、C
    【解析】
    由图形可知:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=.
    【详解】
    第(1)个图形中面积为1的正方形有2个,
    第(2)个图形中面积为1的图象有2+3=5个,
    第(3)个图形中面积为1的正方形有2+3+4=9个,
    …,
    按此规律,
    第n个图形中面积为1的正方形有2+3+4+…+(n+1)= 个.
    【点睛】
    本题考查了规律的知识点,解题的关键是根据图形的变化找出规律.
    8、A
    【解析】
    直接根据圆周角定理即可得出结论.
    【详解】
    ∵A、B、C是⊙O上的三点,∠B=75°,
    ∴∠AOC=2∠B=150°.
    故选A.
    9、C
    【解析】
    A、因为满足本选项条件的四边形ABCD有可能是矩形,因此A中命题不一定成立;
    B、因为满足本选项条件的四边形ABCD有可能是矩形,因此B中命题不一定成立;
    C、因为由结合AO+CO=AC=BD=BO+OD可证得AO=CO,BO=DO,由此即可证得此时四边形ABCD是矩形,因此C中命题一定成立;
    D、因为满足本选项条件的四边形ABCD有可能是等腰梯形,由此D中命题不一定成立.
    故选C.
    10、B
    【解析】
    分析:直接利用反比例函数的性质进而分析得出答案.
    详解:A.反比例函数y=,图象经过点(﹣1,﹣1),故此选项错误;
    B.反比例函数y=,图象在第一、三象限,故此选项正确;
    C.反比例函数y=,每个象限内,y随着x的增大而减小,故此选项错误;
    D.反比例函数y=,当x>1时,0<y<1,故此选项错误.
    故选B.
    点睛:本题主要考查了反比例函数的性质,正确掌握反比例函数的性质是解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、乙 乙的比赛成绩比较稳定.
    【解析】
    观察表格中的数据可知:甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定;乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定,据此可得结论.
    【详解】
    观察表格中的数据可得,甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定; 乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定;
    所以要选派一名选手参加国际比赛,应该选择乙,理由是乙的比赛成绩比较稳定.
    故答案为乙,乙的比赛成绩比较稳定.
    【点睛】
    本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    12、1.
    【解析】
    根据分式为1的条件得到方程,解方程得到答案.
    【详解】
    由题意得,x=1,故答案是:1.
    【点睛】
    本题考查分式的值为零的条件,分式为1需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.
    13、ab(a+b)(a﹣b)
    【解析】
    先提取公因式ab,然后再利用平方差公式分解即可.
    【详解】
    a3b﹣ab3
    =ab(a2﹣b2)
    =ab(a+b)(a﹣b),
    故答案为ab(a+b)(a﹣b).
    【点睛】
    本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.
    14、
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    67000000000的小数点向左移动10位得到6.7,
    所以67000000000用科学记数法表示为,
    故答案为:.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    15、a1.
    【解析】
    试题分析:根据同底数幂的除法底数不变指数相减,可得答案.
    原式=a10-1=a1,
    故答案为a1.
    考点:同底数幂的除法.
    16、
    【解析】
    要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.
    【详解】
    解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.
    ∵圆柱底面的周长为4dm,圆柱高为2dm,
    ∴AB=2dm,BC=BC′=2dm,
    ∴AC2=22+22=8,
    ∴AC=2dm.
    ∴这圈金属丝的周长最小为2AC=4dm.
    故答案为:4dm
    【点睛】
    本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题把圆柱的侧面展开成矩形,“化曲面为平面”是解题的关键.
    17、.
    【解析】
    解:如图,连接AN,由题意知,BM⊥AA',BA=BA',∴AN=A'N,∴∠ANB=∠A'NB=45°,∵∠AMB=22.5°,∴∠MAN=∠ANB﹣∠AMB=22.5°=∠AMN,∴AN=MN=200米,在Rt△ABN中,∠ANB=45°,∴AB=AN=(米),故答案为.

    点睛:此题是解直角三角形的应用﹣﹣﹣仰角和俯角,主要考查了垂直平分线的性质,等腰三角形的性质,解本题的关键是求出∠ANB=45°.

    三、解答题(共7小题,满分69分)
    18、【小题1】 设所求抛物线的解析式为:,将A(1,0)、B(-3,0)、 D(0,3)代入,得…………………………………………2分
    即所求抛物线的解析式为:……………………………3分
    【小题2】 如图④,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称,
    在x轴上取一点H,连接HF、HI、HG、GD、GE,则HF=HI…………………①
    设过A、E两点的一次函数解析式为:y=kx+b(k≠0),
    ∵点E在抛物线上且点E的横坐标为-2,将x=-2,代入抛物线,得
    ∴点E坐标为(-2,3)………………………………………………………………4分
    又∵抛物线图象分别与x轴、y轴交于点A(1,0)、B(-3,0)、
    D(0,3),所以顶点C(-1,4)
    ∴抛物线的对称轴直线PQ为:直线x=-1, [中国教#&~@育出%版网]
    ∴点D与点E关于PQ对称,GD=GE……………………………………………②
    分别将点A(1,0)、点E(-2,3)
    代入y=kx+b,得:
    解得:
    过A、E两点的一次函数解析式为:
    y=-x+1
    ∴当x=0时,y=1
    ∴点F坐标为(0,1)……………………5分
    ∴=2………………………………………③
    又∵点F与点I关于x轴对称,
    ∴点I坐标为(0,-1)
    ∴……………………………………④
    又∵要使四边形DFHG的周长最小,由于DF是一个定值,
    ∴只要使DG+GH+HI最小即可 ……………………………………6分
    由图形的对称性和①、②、③,可知,
    DG+GH+HF=EG+GH+HI
    只有当EI为一条直线时,EG+GH+HI最小
    设过E(-2,3)、I(0,-1)两点的函数解析式为:,
    分别将点E(-2,3)、点I(0,-1)代入,得:
    解得:
    过I、E两点的一次函数解析式为:y=-2x-1
    ∴当x=-1时,y=1;当y=0时,x=-;
    ∴点G坐标为(-1,1),点H坐标为(-,0)
    ∴四边形DFHG的周长最小为:DF+DG+GH+HF=DF+EI
    由③和④,可知:

    DF+EI=
    ∴四边形DFHG的周长最小为. …………………………………………7分
    【小题3】 如图⑤,

    由(2)可知,点A(1,0),点C(-1,4),设过A(1,0),点C(-1,4)两点的函数解析式为:,得:
    解得:,
    过A、C两点的一次函数解析式为:y=-2x+2,当x=0时,y=2,即M的坐标为(0,2);
    由图可知,△AOM为直角三角形,且, ………………8分
    要使,△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论; ……………………………………………………………………………9分
    ①当∠CMP=90°时,CM=,若则,可求的P(-4,0),则CP=5,,即P(-4,0)成立,若由图可判断不成立;……………………………………………………………………………………10分
    ②当∠PCM=90°时,CM=,若则,可求出
    P(-3,0),则PM=,显然不成立,若则,更不可能成立.……11分
    综上所述,存在以P、C、M为顶点的三角形与△AOM相似,点P的坐标为(-4,0)12分
    【解析】
    (1)直接利用三点式求出二次函数的解析式;
    (2)若四边形DFHG的周长最小,应将边长进行转换,利用对称性,要使四边形DFHG的周长最小,由于DF是一个定值,只要使DG+GH+HI最小即可,
    由图形的对称性和,可知,HF=HI,GD=GE,
    DG+GH+HF=EG+GH+HI
    只有当EI为一条直线时,EG+GH+HI最小,即
    ,DF+EI=
    即边形DFHG的周长最小为.
    (3)要使△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论,①当∠CMP=90°时,CM=,若则,可求的P(-4,0),则CP=5,,即P(-4,0)成立,若由图可判断不成立;②当∠PCM=90°时,CM=,若则,可求出P(-3,0),则PM=,显然不成立,若则,更不可能成立. 即求出以P、C、M为顶点的三角形与△AOM相似的P的坐标(-4,0)
    19、 (1) 小强的头部点E与地面DK的距离约为144.5 cm.(2) 他应向前9.5 cm.
    【解析】
    试题分析:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.求出MF、FN的值即可解决问题;
    (2)求出OH、PH的值即可判断;
    试题解析:解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.
    ∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66cos45°=≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm.
    (2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66sin45°≈46.53,∴PH≈46.53,∵GN=100cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他应向前9.5cm.

    20、 (1)坡顶到地面的距离为米;移动信号发射塔的高度约为米.
    【解析】
    延长BC交OP于H.在Rt△APD中解直角三角形求出AD=10.PD=24.由题意BH=PH.设BC=x.则x+10=24+DH.推出AC=DH=x﹣14.在Rt△ABC中.根据tan76°=,构建方程求出x即可.
    【详解】
    延长BC交OP于H.

    ∵斜坡AP的坡度为1:2.4,
    ∴,
    设AD=5k,则PD=12k,由勾股定理,得AP=13k,
    ∴13k=26,
    解得k=2,
    ∴AD=10,
    ∵BC⊥AC,AC∥PO,
    ∴BH⊥PO,
    ∴四边形ADHC是矩形,CH=AD=10,AC=DH,
    ∵∠BPD=45°,
    ∴PH=BH,
    设BC=x,则x+10=24+DH,
    ∴AC=DH=x﹣14,
    在Rt△ABC中,tan76°=,即≈4.1.
    解得:x≈18.7,
    经检验x≈18.7是原方程的解.
    答:古塔BC的高度约为18.7米.
    【点睛】
    本题主要考查了解直角三角形,用到的知识点是勾股定理,锐角三角函数,坡角与坡角等,解决本题的关键是作出辅助线,构造直角三角形.
    21、(1)y1=4x,y2=-5x+1.(2)km.(3)h.
    【解析】
    (1)由图象直接写出函数关系式;
    (2)若相遇,甲乙走的总路程之和等于两地的距离.
    【详解】
    (1)根据图可以得到甲2.5小时,走1千米,则每小时走4千米,则函数关系是:y1=4x,
    乙班从B地出发匀速步行到A地,2小时走了1千米,则每小时走5千米,则函数关系式是:y2=−5x+1.
    (2)由图象可知甲班速度为4km/h,乙班速度为5km/h,
    设甲、乙两班学生出发后,x小时相遇,则
    4x+5x=1,
    解得x=.
    当x=时,y2=−5×+1=,
    ∴相遇时乙班离A地为km.
    (3)甲、乙两班首次相距4千米,
    即两班走的路程之和为6km,
    故4x+5x=6,
    解得x=h.
    ∴甲、乙两班首次相距4千米时所用时间是h.
    22、见解析
    【解析】
    试题分析:依据题意,可通过证△ABC≌△EFD来得出AB=EF的结论,两三角形中,已知的条件有AB∥EF即∠B=∠F,∠A=∠E,BD=CF,即BC=DF;可根据AAS判定两三角形全等解题.             
    证明:∵AB∥EF,
    ∴∠B=∠F.
    又∵BD=CF,
    ∴BC=FD.
    在△ABC与△EFD中,
    ∴△ABC≌△EFD(AAS),
    ∴AB=EF.
    23、(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D点坐标为(1,2)或(4,﹣25).
    【解析】
    (1)设交点式y=a(x+1)(x﹣),展开得到﹣a=3,然后求出a即可得到抛物线解析式;
    (2)作AE⊥BC于E,如图1,先确定C(0,3),再分别计算出AC=,BC=,接着利用面积法计算出AE=,然后根据三角函数的定义求出∠ACE即可;
    (3)作BH⊥CD于H,如图2,设H(m,n),证明Rt△BCH∽Rt△ACO,利用相似计算出BH=,CH=,再根据两点间的距离公式得到(m﹣)2+n2=()2,m2+(n﹣3)2=()2,接着通过解方程组得到H(,﹣)或(),然后求出直线CD的解析式,与二次函数联立成方程组,解方程组即可.
    【详解】
    (1)设抛物线解析式为y=a(x+1)(x﹣),即y=ax2﹣ax﹣a,∴﹣a=3,解得:a=﹣2,∴抛物线解析式为y=﹣2x2+x+3;
    (2)作AE⊥BC于E,如图1,当x=0时,y=﹣2x2+x+3=3,则C(0,3),而A(﹣1,0),B(,0),∴AC==,BC==
    AE•BC=OC•AB,∴AE==.
    在Rt△ACE中,sin∠ACE===,∴∠ACE=45°,即∠ACB=45°;
    (3)作BH⊥CD于H,如图2,设H(m,n).
    ∵tan∠DCB=tan∠ACO,∴∠HCB=∠ACO,∴Rt△BCH∽Rt△ACO,∴==,即==,∴BH=,CH=,∴(m﹣)2+n2=()2=,①
    m2+(n﹣3)2=()2=,②
    ②﹣①得m=2n+,③,把③代入①得:(2n+﹣)2+n2=,整理得:80n2﹣48n﹣9=0,解得:n1=﹣,n2=.
    当n=﹣时,m=2n+=,此时H(,﹣),易得直线CD的解析式为y=﹣7x+3,解方程组得:或,此时D点坐标为(4,﹣25);
    当n=时,m=2n+=,此时H(),易得直线CD的解析式为y=﹣x+3,解方程组得:或,此时D点坐标为(1,2).
    综上所述:D点坐标为(1,2)或(4,﹣25).

    【点睛】
    本题是二次函数综合题.熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定的性质;会利用待定系数法求函数解析式,把求两函数交点问题转化为解方程组的问题;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.
    24、(1)详见解析;(2)详见解析.
    【解析】
    (1)连接AE、BF,找到△ABC的高线的交点,据此可得CD;
    (2)延长CB交圆于点F,延长AF、EB交于点G,连接CG,延长AB交CG于点D,据此可得.
    【详解】
    (1)如图所示,CD 即为所求;

    (2)如图,CD 即为所求.
    【点睛】
    本题主要考查作图-基本作图,解题的关键熟练掌握圆周角定理和三角形的三条高线交于一点的性质.

    相关试卷

    云南省楚雄州—重点名校2021-2022学年中考数学四模试卷含解析: 这是一份云南省楚雄州—重点名校2021-2022学年中考数学四模试卷含解析,共24页。试卷主要包含了下列事件中是必然事件的是,下列说法错误的是,某同学将自己7次体育测试成绩等内容,欢迎下载使用。

    内蒙古鄂尔多斯市重点名校2021-2022学年中考数学四模试卷含解析: 这是一份内蒙古鄂尔多斯市重点名校2021-2022学年中考数学四模试卷含解析,共25页。试卷主要包含了答题时请按要求用笔,计算 的结果为,下列计算结果是x5的为,一次函数y=kx+k等内容,欢迎下载使用。

    江苏省金坛市重点达标名校2021-2022学年中考数学四模试卷含解析: 这是一份江苏省金坛市重点达标名校2021-2022学年中考数学四模试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,如果,下列运算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map