2021-2022学年湖北省襄州区中考数学最后一模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.2017年我国大学生毕业人数将达到7490000人,这个数据用科学记数法表示为( )
A.7.49×107 B.74.9×106 C.7.49×106 D.0.749×107
2.对于命题“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题的是( )
A.∠1=50°,∠1=40° B.∠1=40°,∠1=50°
C.∠1=30°,∠1=60° D.∠1=∠1=45°
3.已知在四边形ABCD中,AD//BC,对角线AC、BD交于点O,且AC=BD,下列四个命题中真命题是( )
A.若AB=CD,则四边形ABCD一定是等腰梯形;
B.若∠DBC=∠ACB,则四边形ABCD一定是等腰梯形;
C.若,则四边形ABCD一定是矩形;
D.若AC⊥BD且AO=OD,则四边形ABCD一定是正方形.
4.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是( )
A.① B.② C.③ D.④
5.计算tan30°的值等于( )
A. B. C. D.
6.已知二次函数(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程的两实数根是
A.x1=1,x2=-1 B.x1=1,x2=2
C.x1=1,x2=0 D.x1=1,x2=3
7.甲、乙两辆汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为( )
A.0个 B.1个 C.2个 D.3个
8.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是
A.平均数 B.中位数 C.众数 D.方差
9.把a•的根号外的a移到根号内得( )
A. B.﹣ C.﹣ D.
10.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ).
A.众数是6吨 B.平均数是5吨 C.中位数是5吨 D.方差是
11.下列说法中,错误的是( )
A.两个全等三角形一定是相似形 B.两个等腰三角形一定相似
C.两个等边三角形一定相似 D.两个等腰直角三角形一定相似
12.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知关于x的不等式组只有四个整数解,则实数a的取值范是______.
14.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.
15.我国自主研发的某型号手机处理器采用10 nm工艺,已知1 nm=0.000000001 m,则10 nm用科学记数法可表示为_____m.
16.如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_____.
17.如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为 .
18.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是__m.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE交边AC于点E,DE交BA延长线于点F,且AD2=DE•DF.
(1)求证:△BFD∽△CAD;
(2)求证:BF•DE=AB•AD.
20.(6分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.求证;∠BDC=∠A.若∠C=45°,⊙O的半径为1,直接写出AC的长.
21.(6分)在下列的网格图中.每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;
(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;
(3)根据(2)中的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.
22.(8分)已知:如图,在四边形ABCD中,AD∥BC,点E为CD边上一点,AE与BE分别为∠DAB和∠CBA的平分线.
(1)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);
(2)在(1)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,sin∠AGF=,求⊙O的半径.
23.(8分)如图,一次函数y=﹣x+6的图象分别交y轴、x轴交于点A、B,点P从点B出发,沿射线BA以每秒1个单位的速度出发,设点P的运动时间为t秒.
(1)点P在运动过程中,若某一时刻,△OPA的面积为6,求此时P的坐标;
(2)在整个运动过程中,当t为何值时,△AOP为等腰三角形?(只需写出t的值,无需解答过程)
24.(10分)如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.
(1)求证:四边形OCED是菱形;
(2)若∠BAC=30°,AC=4,求菱形OCED的面积.
25.(10分)解不等式组,并将它的解集在数轴上表示出来.
26.(12分)在矩形中,点在上,,⊥,垂足为.求证.若,且,求.
27.(12分)桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同.把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中任意抽出一张,记下卡片上的数字,然后将这两数相加.
(1)请用列表或画树状图的方法求两数和为5的概率;
(2)若甲与乙按上述方式做游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,才能使这个游戏对双方公平?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
7490000=7.49×106.
故选C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2、D
【解析】
能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.
【详解】
“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题为∠1=∠1=45°.
故选:D.
【点睛】
考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键.
3、C
【解析】
A、因为满足本选项条件的四边形ABCD有可能是矩形,因此A中命题不一定成立;
B、因为满足本选项条件的四边形ABCD有可能是矩形,因此B中命题不一定成立;
C、因为由结合AO+CO=AC=BD=BO+OD可证得AO=CO,BO=DO,由此即可证得此时四边形ABCD是矩形,因此C中命题一定成立;
D、因为满足本选项条件的四边形ABCD有可能是等腰梯形,由此D中命题不一定成立.
故选C.
4、A
【解析】
根据题意得到原几何体的主视图,结合主视图选择.
【详解】
解:原几何体的主视图是:
.
视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方体叠加即可.
故取走的正方体是①.
故选A.
【点睛】
本题考查了简单组合体的三视图,中等难度,作出几何体的主视图是解题关键.
5、C
【解析】
tan30°= .故选C.
6、B
【解析】
试题分析:∵二次函数(m为常数)的图象与x轴的一个交点为(1,0),
∴.∴.故选B.
7、A
【解析】
解:①由函数图象,得a=120÷3=40,
故①正确,
②由题意,得5.5﹣3﹣120÷(40×2),
=2.5﹣1.5,
=1.
∴甲车维修的时间为1小时;
故②正确,
③如图:
∵甲车维修的时间是1小时,
∴B(4,120).
∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.
∴E(5,240).
∴乙行驶的速度为:240÷3=80,
∴乙返回的时间为:240÷80=3,
∴F(8,0).
设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象得,
,,
解得,,
∴y1=80t﹣200,y2=﹣80t+640,
当y1=y2时,
80t﹣200=﹣80t+640,
t=5.2.
∴两车在途中第二次相遇时t的值为5.2小时,
故弄③正确,
④当t=3时,甲车行的路程为:120km,乙车行的路程为:80×(3﹣2)=80km,
∴两车相距的路程为:120﹣80=40千米,
故④正确,
故选A.
8、D
【解析】
解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;
B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;
C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;
D.原来数据的方差==,
添加数字2后的方差==,
故方差发生了变化.
故选D.
9、C
【解析】
根据二次根式有意义的条件可得a<0,原式变形为﹣(﹣a)•,然后利用二次根式的性质得到,再把根号内化简即可.
【详解】
解:∵﹣>0,
∴a<0,
∴原式=﹣(﹣a)•,
=,
=﹣.
故选C.
【点睛】
本题考查的是二次根式的化简,主要是判断根号有意义的条件,然后确定值的范围再进行化简,是常考题型.
10、C
【解析】
试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2].数据:3,4,5,6,6,6,中位数是5.5,
故选C
考点:1、方差;2、平均数;3、中位数;4、众数
11、B
【解析】
根据相似图形的定义,结合选项中提到的图形,对选项一一分析,选出正确答案.
【详解】
解:A、两个全等的三角形一定相似,正确;
B、两个等腰三角形一定相似,错误,等腰三角形的形状不一定相同;
C、两个等边三角形一定相似;正确,等边三角形形状相同,只是大小不同;
D、两个等腰直角三角形一定相似,正确,等腰直角三角形形状相同,只是大小不同.
故选B.
【点睛】
本题考查的是相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.特别注意,本题是选择错误的,一定要看清楚题.
12、C
【解析】
列表得,
1
2
0
-1
1
(1,1)
(1,2)
(1,0)
(1,-1)
2
(2,1)
(2,2)
(2,0)
(2,-1)
0
(0,1)
(0,2)
(0,0)
(0,-1)
-1
(-1,1)
(-1,2)
(-1,0)
(-1,-1)
由表格可知,总共有16种结果,两个数都为正数的结果有4种,所以两个数都为正数的概率为,故选C.
考点:用列表法(或树形图法)求概率.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、-3<a≤-2
【解析】
分析:求出不等式组中两不等式的解集,根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法则表示出不等式组的解集,由不等式组只有四个整数解,根据解集取出四个整数解,即可得出a的范围.
详解:
由不等式①解得:
由不等式②移项合并得:−2x>−4,
解得:x<2,
∴原不等式组的解集为
由不等式组只有四个整数解,即为1,0,−1,−2,
可得出实数a的范围为
故答案为
点睛:考查一元一次不等式组的整数解,求不等式的解集,根据不等式组有4个整数解觉得实数的取值范围.
14、50(1﹣x)2=1.
【解析】
由题意可得,
50(1−x)²=1,
故答案为50(1−x)²=1.
15、1×10﹣1
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:10nm用科学记数法可表示为1×10-1m,
故答案为1×10-1.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
16、或10
【解析】
试题分析:根据题意,可分为E点在DC上和E在DC的延长线上,两种情况求解即可:
如图①,当点E在DC上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=2,设FE=x,则FE=x,QE=4-x,在Rt△EQF中,(4-x)2+22=x2,所以x=.(2)如图②,当,所以FQ=点E在DG的延长线上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=8,设DE=x,则FE=x,QE=x-4,在Rt△EQF中,(x-4)2+82=x2,所以x=10,综上所述,DE=或10.
17、300π
【解析】
试题分析:首先根据底面圆的面积求得底面的半径,然后结合弧长公式求得扇形的半径,然后利用扇形的面积公式求得侧面积即可.∵底面圆的面积为100π, ∴底面圆的半径为10,∴扇形的弧长等于圆的周长为20π,设扇形的母线长为r, 则=20π, 解得:母线长为30,∴扇形的面积为πrl=π×10×30=300π
考点:(1)、圆锥的计算;(2)、扇形面积的计算
18、1
【解析】
设抛物线的解析式为:y=ax2+b,由图得知点(0,2.4),(1,0)在抛物线上,列方程组得到抛物线的解析式为:y=﹣x2+2.4,根据题意求出y=1.8时x的值,进而求出答案;
【详解】
设抛物线的解析式为:y=ax2+b,
由图得知:点(0,2.4),(1,0)在抛物线上,
∴,解得:,
∴抛物线的解析式为:y=﹣x2+2.4,
∵菜农的身高为1.8m,即y=1.8,
则1.8=﹣x2+2.4,
解得:x=(负值舍去)
故他在不弯腰的情况下,横向活动范围是:1米,
故答案为1.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、见解析
【解析】
试题分析:(1), ,可得∽ ,从而得,
再根据∠BDF=∠CDA 即可证;
(2)由∽ ,可得,从而可得,再由∽,可得从而得,继而可得 ,得到.
试题解析:(1)∵,∴,
∵ ,∴∽ ,
∴,
又∵∠ADB=∠CDE ,∴∠ADB+∠ADF=∠CDE+∠ADF,
即∠BDF=∠CDA ,
∴∽;
(2)∵∽ ,∴,
∵ ,∴,
∵∽,∴,∴,
∴ , ∴.
【点睛】本题考查了相似三角形的性质与判定,能结合图形以及已知条件灵活选择恰当的方法进行证明是关键.
20、(1)详见解析;(2)1+
【解析】
(1)连接OD,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC,再求AC.
【详解】
(1)证明:连结.如图,
与相切于点D,
是的直径,
即
(2)解:在中,
.
【点睛】
此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.
21、(1)作图见解析;(2)如图所示,点A的坐标为(0,1),点C的坐标为(-3,1);(3)如图所示,点B2的坐标为(3,-5),点C2的坐标为(3,-1).
【解析】
(1)分别作出点B个点C旋转后的点,然后顺次连接可以得到;
(2)根据点B的坐标画出平面直角坐标系;
(3)分别作出点A、点B、点C关于原点对称的点,然后顺次连接可以得到.
【详解】
(1)△A如图所示;
(2)如图所示,A(0,1),C(﹣3,1);
(3)△如图所示,(3,﹣5),(3,﹣1).
22、(1)作图见解析;(2)⊙O的半径为.
【解析】
(1)作出相应的图形,如图所示;
(2)由平行四边形的对边平行得到AD与BC平行,可得同旁内角互补,再由AE与BE为角平分线,可得出AE与BE垂直,利用直径所对的圆周角为直角,得到AF与FB垂直,可得出两锐角互余,根据角平分线性质及等量代换得到∠AGF=∠AEB,根据sin∠AGF的值,确定出sin∠AEB的值,求出AB的长,即可确定出圆的半径.
【详解】
解:(1)作出相应的图形,如图所示(去掉线段BF即为所求).
(2)∵AD∥BC,
∴∠DAB+∠CBA=180°.
∵AE与BE分别为∠DAB与∠CBA的平分线,
∴∠EAB+∠EBA=90°,
∴∠AEB=90°.
∵AB为⊙O的直径,点F在⊙O上,
∴∠AFB=90°,∴∠FAG+∠FGA=90°.
∵AE平分∠DAB,
∴∠FAG=∠EAB,∴∠AGF=∠ABE,
∴sin∠ABE=sin∠AGF==.
∵AE=4,∴AB=5,
∴⊙O的半径为.
【点睛】
此题属于圆综合题,涉及的知识有:圆周角定理,平行四边形的判定与性质,角平分线性质,以及锐角三角函数定义,熟练掌握各自的性质及定理是解本题的关键.
23、(1)(2,4.5),(-2,7.5);(2)2.8,4,5,16
【解析】
(1)先求出△OPA的面积为6时BP的长,再求出点P的坐标;
(2)分别讨论AO=AP,AP=OP和AO=OP三种情况.
【详解】
(1)在y=-x+6中,令x=0,得y=6,令y=0,得x=8,
∴A(0,6),B(8,0),
∴OA=6,OB=8,∴AB=10,
∴AB边上的高为6×8÷10=,
∵P点的运动时间为t,∴BP=t,则AP=,
当△AOP面积为6时,则有AP×=6,即×=6,解得t=7.5或12.5,
过P作PE⊥x轴,PF⊥y轴,垂足分别为E、F,
则PE==4.5或7.5,BE==6或10,
则点P坐标为(8-6,4.5)或(8-10,7.5),即(2,4.5)或(-2,7.5);
(2)由题意可知BP=t,AP=,
当△AOP为等腰三角形时,有AP=AO、AP=OP和AO=OP三种情况.
①当AP=AO时,则有=6,解得t=4或16;
②当AP=OP时,过P作PM⊥AO,垂足为M,如图1,
则M为AO中点,故P为AB中点,此时t=5;
③当AO=OP时,过O作ON⊥AB,垂足为N,过P作PH⊥OB,垂足为H,如图2,
则AN=AP=(10-t),
∵PH∥AO,∴△AOB∽△PHB,
∴=,即=,∴PH=t,
又∠OAN+∠AON=∠OAN+PBH=90°,
∴∠AON=∠PBH,又∠ANO=∠PHB,
∴△ANO∽△PHB,
∴=,即=,解得t=;
综上可知当t的值为、4、5和16时,△AOP为等腰三角形.
24、(1)证明见解析;(1).
【解析】
(1)由平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可.(1)解直角三角形求出BC=1.AB=DC=1,连接OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=BC=1,求出OE=1OF=1,求出菱形的面积即可.
【详解】
证明:,,
四边形OCED是平行四边形,
矩形ABCD,,,,
,
四边形OCED是菱形;
在矩形ABCD中,,,,
,
,
连接OE,交CD于点F,
四边形OCED为菱形,
为CD中点,
为BD中点,
,
,
.
【点睛】
本题主要考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.
25、x≤1,解集表示在数轴上见解析
【解析】
首先根据不等式的解法求解不等式,然后在数轴上表示出解集.
【详解】
去分母,得:3x﹣2(x﹣1)≤3,
去括号,得:3x﹣2x+2≤3,
移项,得:3x﹣2x≤3﹣2,
合并同类项,得:x≤1,
将解集表示在数轴上如下:
【点睛】
本题考查了解一元一次不等式,解题的关键是掌握不等式的解法以及在数轴上表示不等式的解集.
26、(1)证明见解析;(2)1
【解析】
分析:(1)利用“AAS”证△ADF≌△EAB即可得;
(2)由∠ADF+∠FDC=90°、∠DAF+∠ADF=90°得∠FDC=∠DAF=30°,据此知AD=2DF,根据DF=AB可得答案.
详解:(1)证明:在矩形ABCD中,∵AD∥BC,
∴∠AEB=∠DAF,
又∵DF⊥AE,
∴∠DFA=90°,
∴∠DFA=∠B,
又∵AD=EA,
∴△ADF≌△EAB,
∴DF=AB.
(2)∵∠ADF+∠FDC=90°,∠DAF+∠ADF=90°,
∴∠FDC=∠DAF=30°,
∴AD=2DF,
∵DF=AB,
∴AD=2AB=1.
点睛:本题主要考查矩形的性质,解题的关键是掌握矩形的性质和全等三角形的判定与性质及直角三角形的性质.
27、(1)详见解析;(2)4分.
【解析】
(1)根据题意用列表法求出答案;
(2)算出甲乙获胜的概率,从而求出乙胜一次的得分.
【详解】
(1)列表如下:
由列表可得:P(数字之和为5)=,
(2)因为P(甲胜)=,P(乙胜)=,∴甲胜一次得12分,要使这个游戏对双方公平,乙胜一次得分应为:12÷3=4分.
【点睛】
本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.
2023年湖北省襄阳市襄州区中考数学模拟试卷(含解析 ): 这是一份2023年湖北省襄阳市襄州区中考数学模拟试卷(含解析 ),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年湖北省襄阳市襄州区中考数学模拟试卷(含解析): 这是一份2023年湖北省襄阳市襄州区中考数学模拟试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖北省襄阳襄州区五校联考2021-2022学年中考数学全真模拟试题含解析: 这是一份湖北省襄阳襄州区五校联考2021-2022学年中考数学全真模拟试题含解析,共19页。试卷主要包含了﹣18的倒数是等内容,欢迎下载使用。