还剩18页未读,
继续阅读
2021-2022学年河南省信阳固始县联考中考数学五模试卷含解析
展开这是一份2021-2022学年河南省信阳固始县联考中考数学五模试卷含解析,共21页。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.如图,在四边形ABCD中,∠A=120°,∠C=80°.将△BMN沿着MN翻折,得到△FMN.若MF∥AD,FN∥DC,则∠F的度数为( )
A.70° B.80° C.90° D.100°
2.下列运算中正确的是( )
A.x2÷x8=x−6 B.a·a2=a2 C.(a2)3=a5 D.(3a)3=9a3
3.等腰三角形底角与顶角之间的函数关系是( )
A.正比例函数 B.一次函数 C.反比例函数 D.二次函数
4.滴滴快车是一种便捷的出行工具,计价规则如下表:
计费项目
里程费
时长费
远途费
单价
1.8元/公里
0.3元/分钟
0.8元/公里
注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.
小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )
A.10分钟 B.13分钟 C.15分钟 D.19分钟
5.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是( )
A.50° B.60° C.70° D.80°
6.2017年底我国高速公路已开通里程数达13.5万公里,居世界第一,将数据135000用科学计数法表示正确的是( )
A.1.35×106 B.1.35×105 C.13.5×104 D.135×103
7.如图,是一个工件的三视图,则此工件的全面积是( )
A.60πcm2 B.90πcm2 C.96πcm2 D.120πcm2
8.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为4m的正方形,使不规则区域落在正方形内.现向正方形内随机投掷小球(假设小球落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小球落在不规则区域的频率稳定在常数0.65附近,由此可估计不规则区域的面积约为( )
A.2.6m2 B.5.6m2 C.8.25m2 D.10.4m2
9.如图,若AB∥CD,CD∥EF,那么∠BCE=( )
A.∠1+∠2 B.∠2-∠1
C.180°-∠1+∠2 D.180°-∠2+∠1
10.根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p(pa)与它的体积v(m3)的乘积是一个常数k,即pv=k(k为常数,k>0),下列图象能正确反映p与v之间函数关系的是( )
A. B.
C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.计算的结果等于_____.
12.因式分解:3a3﹣6a2b+3ab2=_____.
13.已知线段c是线段a和b的比例中项,且a、b的长度分别为2cm和8cm,则c的长度为_____cm.
14.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=__________度.
15.化简3m﹣2(m﹣n)的结果为_____.
16.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为_______.
三、解答题(共8题,共72分)
17.(8分)一辆汽车,新车购买价30万元,第一年使用后折旧,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值为万元,求这辆车第二、三年的年折旧率.
18.(8分)如图,已知抛物线(>0)与轴交于A,B两点(A点在B点的左边),与轴交于点C。
(1)如图1,若△ABC为直角三角形,求的值;
(2)如图1,在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B,C,P,Q为顶点的四边形是平行四边形,求P点的坐标;
(3)如图2,过点A作直线BC的平行线交抛物线于另一点D,交轴交于点E,若AE:ED=1:4,求的值.
19.(8分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.
(1)求证:四边形AECF为菱形;
(2)若AB=4,BC=8,求菱形AECF的周长.
20.(8分)如图,已知抛物线与x轴负半轴相交于点A,与y轴正半轴相交于点B,,直线l过A、B两点,点D为线段AB上一动点,过点D作轴于点C,交抛物线于点 E.
(1)求抛物线的解析式;
(2)若抛物线与x轴正半轴交于点F,设点D的横坐标为x,四边形FAEB的面积为S,请写出S与x的函数关系式,并判断S是否存在最大值,如果存在,求出这个最大值;并写出此时点E的坐标;如果不存在,请说明理由.
(3)连接BE,是否存在点D,使得和相似?若存在,求出点D的坐标;若不存在,说明理由.
21.(8分)程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?
22.(10分)已知抛物线的开口向上顶点为P
(1)若P点坐标为(4,一1),求抛物线的解析式;
(2)若此抛物线经过(4,一1),当-1≤x≤2时,求y的取值范围(用含a的代数式表示)
(3)若a=1,且当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,求b的值
23.(12分)计算:(﹣2)0++4cos30°﹣|﹣|.
24.如图,在Rt△ABC中,,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.求证:CE=AD;当D在AB中点时,四边形BECD是什么特殊四边形?说明理由;若D为AB中点,则当=______时,四边形BECD是正方形.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
首先利用平行线的性质得出∠BMF=120°,∠FNB=80°,再利用翻折变换的性质得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,进而求出∠B的度数以及得出∠F的度数.
【详解】
∵MF∥AD,FN∥DC,∠A=120°,∠C=80°,
∴∠BMF=120°,∠FNB=80°,
∵将△BMN沿MN翻折得△FMN,
∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,
∴∠F=∠B=180°-60°-40°=80°,
故选B.
【点睛】
主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.
2、A
【解析】
根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.
【详解】
解:A、x2÷x8=x-6,故该选项正确;
B、a•a2=a3,故该选项错误;
C、(a2)3=a6,故该选项错误;
D、(3a)3=27a3,故该选项错误;
故选A.
【点睛】
此题主要考查了同底数幂的乘除法、幂的乘方和积的乘方,关键是掌握相关运算法则.
3、B
【解析】
根据一次函数的定义,可得答案.
【详解】
设等腰三角形的底角为y,顶角为x,由题意,得
x+2y=180,
所以,y=﹣x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,
故选B.
【点睛】
本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.
4、D
【解析】
设小王的行车时间为x分钟,小张的行车时间为y分钟,根据计价规则计算出小王的车费和小张的车费,建立方程求解.
【详解】
设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:
1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),
10.8+0.3x=16.5+0.3y,
0.3(x-y)=5.7,
x-y=19,
故答案为D.
【点睛】
本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.
5、B
【解析】
试题分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.
由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B.
考点:旋转的性质.
6、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:135000=1.35×105
故选B.
【点睛】
此题考查科学记数法表示较大的数.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
7、C
【解析】
先根据三视图得到圆锥的底面圆的直径为12cm,高为8cm,再计算母线长为10,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形半径等于圆锥的母线长计算圆锥的侧面积和底面积的和即可.
【详解】
圆锥的底面圆的直径为12cm,高为8cm,
所以圆锥的母线长==10,
所以此工件的全面积=π×62+×2π×6×10=96π(cm2).
故答案选C.
【点睛】
本题考查的知识点是圆锥的面积及由三视图判断几何体,解题的关键是熟练的掌握圆锥的面积及由三视图判断几何体.
8、D
【解析】
首先确定小石子落在不规则区域的概率,然后利用概率公式求得其面积即可.
【详解】
∵经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.65附近,
∴小石子落在不规则区域的概率为0.65,
∵正方形的边长为4m,
∴面积为16 m2
设不规则部分的面积为s m2
则=0.65
解得:s=10.4
故答案为:D.
【点睛】
利用频率估计概率.
9、D
【解析】
先根据AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把两式相加即可得出结论.
【详解】
解:∵AB∥CD,
∴∠BCD=∠1,
∵CD∥EF,
∴∠DCE=180°-∠2,
∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.
故选:D.
【点睛】
本题考查的是平行线的判定,用到的知识点为:两直线平行,内错角相等,同旁内角互补.
10、C
【解析】
【分析】根据题意有:pv=k(k为常数,k>0),故p与v之间的函数图象为反比例函数,且根据实际意义p、v都大于0,由此即可得.
【详解】∵pv=k(k为常数,k>0)
∴p=(p>0,v>0,k>0),
故选C.
【点睛】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
分析:直接利用二次根式的性质进行化简即可.
详解:==.
故答案为.
点睛:本题主要考查了分母有理化,正确掌握二次根式的性质是解题的关键.
12、3a(a﹣b)1
【解析】
首先提取公因式3a,再利用完全平方公式分解即可.
【详解】
3a3﹣6a1b+3ab1,
=3a(a1﹣1ab+b1),
=3a(a﹣b)1.
故答案为:3a(a﹣b)1.
【点睛】
此题考查多项式的因式分解,多项式分解因式时如果有公因式必须先提取公因式,然后再利用公式法分解因式,根据多项式的特点用适合的分解因式的方法是解题的关键.
13、1
【解析】
根据比例中项的定义,列出比例式即可得出中项,注意线段长度不能为负.
【详解】
根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.
所以c2=2×8,
解得c=±1(线段是正数,负值舍去),
故答案为1.
【点睛】
此题考查了比例线段.理解比例中项的概念,这里注意线段长度不能是负数.
14、22.5°
【解析】
四边形ABCD是矩形,
AC=BD,OA=OC,OB=OD,
OA=OB═OC,
∠OAD=∠ODA,∠OAB=∠OBA,
∠AOE=∠OAD+∠ODA=2∠OAD,
∠EAC=2∠CAD,
∠EAO=∠AOE,
AE⊥BD,
∠AEO=90°,
∠AOE=45°,
∠OAB=∠OBA=67.5°,
即∠BAE=∠OAB﹣∠OAE=22.5°.
考点:矩形的性质;等腰三角形的性质.
15、m+2n
【解析】分析:先去括号,再合并同类项即可得.
详解:原式=3m-2m+2n=m+2n,
故答案为:m+2n.
点睛:本题主要考查整式的加减,解题的关键是掌握去括号与合并同类项的法则.
16、(3,2).
【解析】
过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.
【详解】
过点P作PD⊥x轴于点D,连接OP,
∵A(6,0),PD⊥OA,
∴OD=OA=3,
在Rt△OPD中 ∵OP= OD=3,
∴PD=2
∴P(3,2) .
故答案为(3,2).
【点睛】
本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
三、解答题(共8题,共72分)
17、这辆车第二、三年的年折旧率为.
【解析】
设这辆车第二、三年的年折旧率为x,则第二年这就后的价格为30(1-20%)(1-x)元,第三年折旧后的而价格为30(1-20%)(1-x)2元,与第三年折旧后的价格为17.34万元建立方程求出其解即可.
【详解】
设这辆车第二、三年的年折旧率为,依题意,得
整理得,
解得,.
因为折旧率不可能大于1,所以不合题意,舍去.
所以
答:这辆车第二、三年的年折旧率为.
【点睛】
本题是一道折旧率问题,考查了列一元二次方程解实际问题的运用,解答本题时设出折旧率,表示出第三年的折旧后价格并运用价格为11.56万元建立方程是关键.
18、(1);(2)点P的坐标为 ;(3).
【解析】
(1)利用三角形相似可求AO•OB,再由一元二次方程根与系数关系求AO•OB构造方程求n;
(2)求出B、C坐标,设出点Q坐标,利用平行四边形对角线互相平分性质,分类讨论点P坐标,分别代入抛物线解析式,求出Q点坐标;
(3)设出点D坐标(a,b),利用相似表示OA,再由一元二次方程根与系数关系表示OB,得到点B坐标,进而找到b与a关系,代入抛物线求a、n即可.
【详解】
(1)若△ABC为直角三角形
∴△AOC∽△COB
∴OC2=AO•OB
当y=0时,0=x2-x-n
由一元二次方程根与系数关系
-OA•OB=OC2
n2==−2n
解得n=0(舍去)或n=2
∴抛物线解析式为y=;
(2)由(1)当=0时
解得x1=-1,x2=4
∴OA=1,OB=4
∴B(4,0),C(0,-2)
∵抛物线对称轴为直线x=-=−
∴设点Q坐标为(,b)
由平行四边形性质可知
当BQ、CP为平行四边形对角线时,点P坐标为(,b+2)
代入y=x2-x-2
解得b=,则P点坐标为(,)
当CQ、PB为为平行四边形对角线时,点P坐标为(-,b-2)
代入y=x2-x-2
解得b=,则P坐标为(-,)
综上点P坐标为(,),(-,);
(3)设点D坐标为(a,b)
∵AE:ED=1:4
则OE=b,OA=a
∵AD∥AB
∴△AEO∽△BCO
∵OC=n
∴
∴OB=
由一元二次方程根与系数关系得,
∴b=a2
将点A(-a,0),D(a,a2)代入y=x2-x-n
解得a=6或a=0(舍去)
则n= .
【点睛】
本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.
19、(1)见解析;(2)1
【解析】
(1)根据ASA推出:△AEO≌△CFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;
(2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到结论.
【详解】
(1)∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°.
∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.
在△AEO和△CFO中,∵,∴△AEO≌△CFO(ASA);∴OE=OF.
又∵OA=OC,∴四边形AECF是平行四边形.
又∵EF⊥AC,∴平行四边形AECF是菱形;
(2)设AF=x.
∵EF是AC的垂直平分线,∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周长为1.
【点睛】
本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想.
20、(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为.(3)存在点D,使得和相似,此时点D的坐标为或.
【解析】
利用二次函数图象上点的坐标特征可得出点A、B的坐标,结合即可得出关于a的一元一次方程,解之即可得出结论;
由点A、B的坐标可得出直线AB的解析式待定系数法,由点D的横坐标可得出点D、E的坐标,进而可得出DE的长度,利用三角形的面积公式结合即可得出S关于x的函数关系式,再利用二次函数的性质即可解决最值问题;
由、,利用相似三角形的判定定理可得出:若要和相似,只需或,设点D的坐标为,则点E的坐标为,进而可得出DE、BD的长度当时,利用等腰直角三角形的性质可得出,进而可得出关于m的一元二次方程,解之取其非零值即可得出结论;当时,由点B的纵坐标可得出点E的纵坐标为4,结合点E的坐标即可得出关于m的一元二次方程,解之取其非零值即可得出结论综上即可得出结论.
【详解】
当时,有,
解得:,,
点A的坐标为.
当时,,
点B的坐标为.
,
,解得:,
抛物线的解析式为.
点A的坐标为,点B的坐标为,
直线AB的解析式为.
点D的横坐标为x,则点D的坐标为,点E的坐标为,
如图.
点F的坐标为,点A的坐标为,点B的坐标为,
,,,
.
,
当时,S取最大值,最大值为18,此时点E的坐标为,
与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为.
,,
若要和相似,只需或如图.
设点D的坐标为,则点E的坐标为,
,
当时,,
,
,
为等腰直角三角形.
,即,
解得:舍去,,
点D的坐标为;
当时,点E的纵坐标为4,
,
解得:,舍去,
点D的坐标为.
综上所述:存在点D,使得和相似,此时点D的坐标为或.
故答案为:(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为.(3)存在点D,使得和相似,此时点D的坐标为或.
【点睛】
本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、三角形的面积、二次函数的性质、相似三角形的判定、等腰直角三角形以及解一元二次方程,解题的关键是:利用二次函数图象上点的坐标特征求出点A、B的坐标;利用三角形的面积找出S关于x的函数关系式;分及两种情况求出点D的坐标.
21、大和尚有25人,小和尚有75人.
【解析】
设大和尚有x人,小和尚有y人,根据100个和尚吃100个馒头且1个大和尚分3个、3个小和尚分1个,即可得出关于x,y的二元一次方程组,解之即可得出结论.
【详解】
解:设大和尚有x人,小和尚有y人,
依题意,得:,
解得:.
答:大和尚有25人,小和尚有75人.
【点睛】
考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
22、(1);(2)1-4a≤y≤4+5a;(3)b=2或-10.
【解析】
(1)将P(4,-1)代入,可求出解析式
(2)将(4,-1)代入求得:b=-4a-1,再代入对称轴直线 中,可判断,且开口向上,所以y随x的增大而减小,再把x=-1,x=2代入即可求得.
(3)观察图象可得,当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,这些点可能为x=0,x=1,三种情况,再根据对称轴在不同位置进行讨论即可.
【详解】
解:(1)由此抛物线顶点为P(4,-1),
所以y=a(x-4)2-1=ax2-8ax+16a-1,即16a-1=3,解得a=, b=-8a=-2
所以抛物线解析式为:;
(2)由此抛物线经过点C(4,-1),
所以 一1=16a+4b+3,即b=-4a-1.
因为抛物线的开口向上,则有
其对称轴为直线,而
所以当-1≤x≤2时,y随着x的增大而减小
当x=-1时,y=a+(4a+1)+3=4+5a
当x=2时,y=4a-2(4a+1)+3=1-4a
所以当-1≤x≤2时,1-4a≤y≤4+5a;
(3)当a=1时,抛物线的解析式为y=x2+bx+3
∴抛物线的对称轴为直线
由抛物线图象可知,仅当x=0,x=1或x=-时,抛物线上的点可能离x轴最远
分别代入可得,当x=0时,y=3
当x=1时,y=b+4
当x=-时,y=-+3
①当一<0,即b>0时,3≤y≤b+4,
由b+4=6解得b=2
②当0≤-≤1时,即一2≤b≤0时,△=b2-12<0,抛物线与x轴无公共点
由b+4=6解得b=2(舍去);
③当 ,即b<-2时,b+4≤y≤3,
由b+4=-6解得b=-10
综上,b=2或-10
【点睛】
本题考查了二次函数的性质,待定系数法求函数解析式,以及最值问题,关键是对称轴在不同的范围内,抛物线上的点到x轴距离的最大值的点不同.
23、1
【解析】
分析:按照实数的运算顺序进行运算即可.
详解:原式
=1.
点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.
24、(1)详见解析;(2)菱形;(3)当∠A=45°,四边形BECD是正方形.
【解析】
(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;
(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;
(3)求出∠CDB=90°,再根据正方形的判定推出即可.
【详解】
(1)∵DE⊥BC,
∴∠DFP=90°,
∵∠ACB=90°,
∴∠DFB=∠ACB,
∴DE//AC,
∵MN//AB,
∴四边形ADEC为平行四边形,
∴CE=AD;
(2)菱形,理由如下:
在直角三角形ABC中,
∵D为AB中点,
∴BD=AD,
∵CE=AD,
∴BD=CE,
∴MN//AB,
∴BECD是平行四边形,
∵∠ACB=90°,D是AB中点,
∴BD=CD,(斜边中线等于斜边一半)
∴四边形BECD是菱形;
(3)若D为AB中点,则当∠A=45°时,四边形BECD是正方形,
理由:∵∠A=45°,∠ACB=90°,
∴∠ABC=45°,
∵四边形BECD是菱形,
∴DC=DB,
∴∠DBC=∠DCB=45°,
∴∠CDB=90°,
∵四边形BECD是菱形,
∴四边形BECD是正方形,
故答案为45°.
【点睛】
本题考查了平行四边形的判定与性质,菱形的判定、正方形的判定,直角三角形斜边中线的性质等,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.
相关试卷
数学:河南省信阳市固始县2024年中考三模试题(解析版):
这是一份数学:河南省信阳市固始县2024年中考三模试题(解析版),共18页。试卷主要包含了填空题,解答题,八年级各有名学生,为了解该校七等内容,欢迎下载使用。
2023年河南省信阳市三校联考中考数学二模试卷(含解析):
这是一份2023年河南省信阳市三校联考中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2023年河南省信阳市固始县中考数学一模试卷(含答案解析):
这是一份2023年河南省信阳市固始县中考数学一模试卷(含答案解析),共19页。试卷主要包含了 −2的绝对值是, 下列计算结果正确的是等内容,欢迎下载使用。