2021-2022学年河南省平顶山市42中学中考数学模拟预测试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.若等式x2+ax+19=(x﹣5)2﹣b成立,则 a+b的值为( )
A.16 B.﹣16 C.4 D.﹣4
2.如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是( )
A.主视图是中心对称图形
B.左视图是中心对称图形
C.主视图既是中心对称图形又是轴对称图形
D.俯视图既是中心对称图形又是轴对称图形
3.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )
A. B. C. D.
4.a、b是实数,点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,则( )
A.a<b<0 B.b<a<0 C.a<0<b D.b<0<a
5.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是( )
A. B. C. D.
6.若正比例函数y=3x的图象经过A(﹣2,y1),B(﹣1,y2)两点,则y1与y2的大小关系为( )
A.y1<y2 B.y1>y2 C.y1≤y2 D.y1≥y2
7.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于( )
A.2cm B.3cm C.6cm D.7cm
8.如果与互补,与互余,则与的关系是( )
A. B.
C. D.以上都不对
9.如图,两个反比例函数y1=(其中k1>0)和y2=在第一象限内的图象依次是C1和C2,点P在C1上.矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为( )
A.:1 B.2: C.2:1 D.29:14
10.如图,在矩形ABCD中,E是AD上一点,沿CE折叠△CDE,点D恰好落在AC的中点F处,若CD=,则△ACE的面积为( )
A.1 B. C.2 D.2
二、填空题(共7小题,每小题3分,满分21分)
11.九(5)班有男生27人,女生23人,班主任发放准考证时,任意抽取一张准考证,恰好是女生的准考证的概率是________________.
12.若直角三角形两边分别为6和8,则它内切圆的半径为_____.
13.如图,在边长为1的正方形格点图中,B、D、E为格点,则∠BAC的正切值为_____.
14.已知a+ =3,则的值是_____.
15.已知二次函数中,函数y与x的部分对应值如下:
...
-1
0
1
2
3
...
...
10
5
2
1
2
...
则当时,x的取值范围是_________.
16.不等式组的解是________.
17.不等式组的解集为____.
三、解答题(共7小题,满分69分)
18.(10分)如图,抛物线(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.
求抛物线的解析式;抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.
19.(5分)嘉淇在做家庭作业时,不小心将墨汁弄倒,恰好覆盖了题目的一部分:计算:(﹣7)0+|1﹣|+()﹣1﹣□+(﹣1)2018,经询问,王老师告诉题目的正确答案是1.
(1)求被覆盖的这个数是多少?
(2)若这个数恰好等于2tan(α﹣15)°,其中α为三角形一内角,求α的值.
20.(8分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.
(1)求一次函数y=kx+b的关系式;
(2)结合图象,直接写出满足kx+b>的x的取值范围;
(3)若点P在x轴上,且S△ACP=,求点P的坐标.
21.(10分)我市某中学决定在八年级阳光体育“大课间”活动中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)将两个统计图补充完整;
(3)若调查到喜欢“立定跳远”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
22.(10分)某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路.甲勘测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O位于南偏西73.7°,测得AC=840m,BC=500m.请求出点O到BC的距离.参考数据:sin73.7°≈,cos73.7°≈,tan73.7°≈
23.(12分)如图,抛物线与x轴交于A,B,与y轴交于点C(0,2),直线经过点A,C.
(1)求抛物线的解析式;
(2)点P为直线AC上方抛物线上一动点;
①连接PO,交AC于点E,求的最大值;
②过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使△PFC中的一个角等于∠CAB的2倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.
24.(14分)如图1,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN.
(1)观察猜想:
图1中,PM与PN的数量关系是 ,位置关系是 .
(2)探究证明:
将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H,判断△PMN的形状,并说明理由;
(3)拓展延伸:
把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN面积的最大值.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
分析:已知等式利用完全平方公式整理后,利用多项式相等的条件求出a与b的值,即可求出a+b的值.
详解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,
可得a=-10,b=6,
则a+b=-10+6=-4,
故选D.
点睛:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
2、D
【解析】
先得到圆锥的三视图,再根据中心对称图形和轴对称图形的定义求解即可.
【详解】
解:A、主视图不是中心对称图形,故A错误;
B、左视图不是中心对称图形,故B错误;
C、主视图不是中心对称图形,是轴对称图形,故C错误;
D、俯视图既是中心对称图形又是轴对称图形,故D正确.
故选:D.
【点睛】
本题考查简单几何体的三视图,中心对称图形和轴对称图形,熟练掌握各自的定义是解题关键.
3、A
【解析】
设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.
【详解】
设索长为x尺,竿子长为y尺,
根据题意得:.
故选A.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
4、A
【解析】
解:∵,∴反比例函数的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数的图象上,∴a<b<0,故选A.
5、D
【解析】
设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.
【详解】
设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,
∵△ABC放大到原来的2倍得到△A′B′C,
∴2(﹣1﹣x)=a+1,
解得x=﹣(a+3),
故选:D.
【点睛】
本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.
6、A
【解析】
分别把点A(−1,y1),点B(−1,y1)代入函数y=3x,求出点y1,y1的值,并比较出其大小即可.
【详解】
解:∵点A(−1,y1),点B(−1,y1)是函数y=3x图象上的点,
∴y1=−6,y1=−3,
∵−3>−6,
∴y1<y1.
故选A.
【点睛】
本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.
7、D
【解析】
【分析】先求AC,再根据点D是线段AC的中点,求出CD,再求BD.
【详解】因为,AB=10cm,BC=4cm,
所以,AC=AB-BC=10-4=6(cm)
因为,点D是线段AC的中点,
所以,CD=3cm,
所以,BD=BC+CD=3+4=7(cm)
故选D
【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.
8、C
【解析】
根据∠1与∠2互补,∠2与∠1互余,先把∠1、∠1都用∠2来表示,再进行运算.
【详解】
∵∠1+∠2=180°
∴∠1=180°-∠2
又∵∠2+∠1=90°
∴∠1=90°-∠2
∴∠1-∠1=90°,即∠1=90°+∠1.
故选C.
【点睛】
此题主要记住互为余角的两个角的和为90°,互为补角的两个角的和为180度.
9、A
【解析】
试题分析:首先根据反比例函数y2=的解析式可得到=×3=,再由阴影部分面积为6可得到=9,从而得到图象C1的函数关系式为y=,再算出△EOF的面积,可以得到△AOC与△EOF的面积比,然后证明△EOF∽△AOC,根据对应边之比等于面积比的平方可得到EF﹕AC=.
故选A.
考点:反比例函数系数k的几何意义
10、B
【解析】
由折叠的性质可得CD=CF=,DE=EF,AC=,由三角形面积公式可求EF的长,即可求△ACE的面积.
【详解】
解:∵点F是AC的中点,
∴AF=CF=AC,
∵将△CDE沿CE折叠到△CFE,
∴CD=CF=,DE=EF,
∴AC=,
在Rt△ACD中,AD==1.
∵S△ADC=S△AEC+S△CDE,
∴×AD×CD=×AC×EF+×CD×DE
∴1×=EF+DE,
∴DE=EF=1,
∴S△AEC=××1=.
故选B.
【点睛】
本题考查了翻折变换,勾股定理,熟练运用三角形面积公式求得DE=EF=1是解决本题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
用女生人数除以总人数即可.
【详解】
由题意得,恰好是女生的准考证的概率是.
故答案为:.
【点睛】
此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
12、2或-1
【解析】
根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求出另一边的长,再根据内切圆半径公式求解即可.
【详解】
若8是直角边,则该三角形的斜边的长为:,
∴内切圆的半径为:;
若8是斜边,则该三角形的另一条直角边的长为:,
∴内切圆的半径为:.
故答案为2或-1.
【点睛】
本题考查了勾股定理,三角形的内切圆,以及分类讨论的数学思想,分类讨论是解答本题的关键.
13、
【解析】
根据圆周角定理可得∠BAC=∠BDC,然后求出tan∠BDC的值即可.
【详解】
由图可得,∠BAC=∠BDC,
∵⊙O在边长为1的网格格点上,
∴BE=3,DB=4,
则tan∠BDC==
∴tan∠BAC=
故答案为
【点睛】
本题考查的知识点是圆周角定理及其推论及解直角三角形,解题的关键是熟练的掌握圆周角定理及其推论及解直角三角形.
14、7
【解析】
根据完全平方公式可得:原式=.
15、0
根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案.
【详解】
由表可知,二次函数的对称轴为直线x=2,
所以,x=4时,y=5,
所以,y<5时,x的取值范围为0
此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值得取值范围,同学们应熟练掌握.
16、x>4
【解析】
分别解出不等式组中的每一个不等式,然后根据同大取大得出不等式组的解集.
【详解】
由①得:x>2;
由②得 :x>4;
∴此不等式组的解集为x>4;
故答案为x>4.
【点睛】
考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
17、x>1
【解析】
分别解出两不等式的解集再求其公共解.
【详解】
由①得:x>1
由②得:x>
∴不等式组的解集是x>1.
【点睛】
求不等式的解集须遵循以下原则:同大取较大,同小取较小.小大大小中间找,大大小小解不了.
三、解答题(共7小题,满分69分)
18、(1)抛物线的解析式为;(2)PM=(0<m<3);(3)存在这样的点P使△PFC与△AEM相似.此时m的值为或1,△PCM为直角三角形或等腰三角形.
【解析】
(1)将A(3,0),C(0,4)代入,运用待定系数法即可求出抛物线的解析式.
(2)先根据A、C的坐标,用待定系数法求出直线AC的解析式,从而根据抛物线和直线AC的解析式分别表示出点P、点M的坐标,即可得到PM的长.
(3)由于∠PFC和∠AEM都是直角,F和E对应,则若以P、C、F为顶点的三角形和△AEM相似时,分两种情况进行讨论:①△PFC∽△AEM,②△CFP∽△AEM;可分别用含m的代数式表示出AE、EM、CF、PF的长,根据相似三角形对应边的比相等列出比例式,求出m的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出△PCM的形状.
【详解】
解:(1)∵抛物线(a≠0)经过点A(3,0),点C(0,4),
∴,解得.
∴抛物线的解析式为.
(2)设直线AC的解析式为y=kx+b,
∵A(3,0),点C(0,4),
∴,解得.
∴直线AC的解析式为.
∵点M的横坐标为m,点M在AC上,
∴M点的坐标为(m,).
∵点P的横坐标为m,点P在抛物线上,
∴点P的坐标为(m,).
∴PM=PE-ME=()-()=.
∴PM=(0<m<3).
(3)在(2)的条件下,连接PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似.理由如下:
由题意,可得AE=3﹣m,EM=,CF=m,PF==,
若以P、C、F为顶点的三角形和△AEM相似,分两种情况:
①若△PFC∽△AEM,则PF:AE=FC:EM,即():(3-m)=m:(),
∵m≠0且m≠3,∴m=.
∵△PFC∽△AEM,∴∠PCF=∠AME.
∵∠AME=∠CMF,∴∠PCF=∠CMF.
在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.
∴△PCM为直角三角形.
②若△CFP∽△AEM,则CF:AE=PF:EM,即m:(3-m)=():(),
∵m≠0且m≠3,∴m=1.
∵△CFP∽△AEM,∴∠CPF=∠AME.
∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM.
∴△PCM为等腰三角形.
综上所述,存在这样的点P使△PFC与△AEM相似.此时m的值为或1,△PCM为直角三角形或等腰三角形.
19、(1)2;(2)α=75°.
【解析】
(1)直接利用绝对值的性质以及负指数幂的性质以及零指数幂的性质分别化简得出答案;
(2)直接利用特殊角的三角函数值计算得出答案.
【详解】
解:(1)原式=1+﹣1+﹣□+1=1,
∴□=1+﹣1++1﹣1=2;
(2)∵α为三角形一内角,
∴0°<α<180°,
∴﹣15°<(α﹣15)°<165°,
∵2tan(α﹣15)°=,
∴α﹣15°=60°,
∴α=75°.
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键.
20、(1);(1)-6<x<0或1<x;(3)(-1,0)或(-6,0)
【解析】
(1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;
(1)根据函数图像判断即可;
(3)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ACP=S△BOC,即可得出|x+4|=1,解之即可得出结论.
【详解】
(1)∵点A(m,3),B(-6,n)在双曲线y=上,
∴m=1,n=-1,
∴A(1,3),B(-6,-1).
将(1,3),B(-6,-1)带入y=kx+b,
得:,解得,.
∴直线的解析式为y=x+1.
(1)由函数图像可知,当kx+b>时,-6<x<0或1<x;
(3)当y=x+1=0时,x=-4,
∴点C(-4,0).
设点P的坐标为(x,0),如图,
∵S△ACP=S△BOC,A(1,3),B(-6,-1),
∴×3|x-(-4)|=××|0-(-4)|×|-1|,即|x+4|=1,
解得:x1=-6,x1=-1.
∴点P的坐标为(-6,0)或(-1,0).
【点睛】
本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出直线AB的解析式;(1)根据函数图像判断不等式取值范围;(3)根据三角形的面积公式以及S△ACP=S△BOC,得出|x+4|=1.
21、 (1)50名;(2)补图见解析;(3) 刚好抽到同性别学生的概率是
【解析】
试题分析:(1)由题意可得本次调查的学生共有:15÷30%;
(2)先求出C的人数,再求出C的百分比即可;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好抽到同性别学生的情况,再利用概率公式即可求得答案.
试题解析:(1)根据题意得: 15÷30%=50(名).
答;在这项调查中,共调查了50名学生;
(2)图如下:
(3)用A表示男生,B表示女生,画图如下:
共有20种情况,同性别学生的情况是8种,
则刚好抽到同性别学生的概率是.
22、点O到BC的距离为480m.
【解析】
作OM⊥BC于M,ON⊥AC于N,设OM=x,根据矩形的性质用x表示出OM、MC,根据正切的定义用x表示出BM,根据题意列式计算即可.
【详解】
作OM⊥BC于M,ON⊥AC于N,
则四边形ONCM为矩形,
∴ON=MC,OM=NC,
设OM=x,则NC=x,AN=840﹣x,
在Rt△ANO中,∠OAN=45°,
∴ON=AN=840﹣x,则MC=ON=840﹣x,
在Rt△BOM中,BM==x,
由题意得,840﹣x+x=500,
解得,x=480,
答:点O到BC的距离为480m.
【点睛】
本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键.
23、(1);(2)①有最大值1;②(2,3)或(,)
【解析】
(1)根据自变量与函数值的对应关系,可得A,C点坐标,根据代定系数法,可得函数解析式;
(2)①根据相似三角形的判定与性质,可得,根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;
②根据勾股定理的逆定理得到△ABC是以∠ACB为直角的直角三角形,取AB的中点D,求得D(,0),得到DA=DC=DB=,过P作x轴的平行线交y轴于R,交AC于G,情况一:如图,∠PCF=2∠BAC=∠DGC+∠CDG,情况二,∠FPC=2∠BAC,解直角三角形即可得到结论.
【详解】
(1)当x=0时,y=2,即C(0,2),
当y=0时,x=4,即A(4,0),
将A,C点坐标代入函数解析式,得
,
解得,
抛物线的解析是为;
(2)过点P向x轴做垂线,交直线AC于点M,交x轴于点N
,
∵直线PN∥y轴,
∴△PEM~△OEC,
∴
把x=0代入y=-x+2,得y=2,即OC=2,
设点P(x,-x2+x+2),则点M(x,-x+2),
∴PM=(-x2+x+2)-(-x+2)=-x2+2x=-(x-2)2+2,
∴=,
∵0<x<4,∴当x=2时,=有最大值1.
②∵A(4,0),B(-1,0),C(0,2),
∴AC=2,BC=,AB=5,
∴AC2+BC2=AB2,
∴△ABC是以∠ACB为直角的直角三角形,取AB的中点D,
∴D(,0),
∴DA=DC=DB=,
∴∠CDO=2∠BAC,
∴tan∠CDO=tan(2∠BAC)=,
过P作x轴的平行线交y轴于R,交AC的延长线于G,
情况一:如图
,
∴∠PCF=2∠BAC=∠PGC+∠CPG,
∴∠CPG=∠BAC,
∴tan∠CPG=tan∠BAC=,
即,
令P(a,-a2+a+2),
∴PR=a,RC=-a2+a,
∴,
∴a1=0(舍去),a2=2,
∴xP=2,-a2+a+2=3,P(2,3)
情况二,∴∠FPC=2∠BAC,
∴tan∠FPC=,
设FC=4k,
∴PF=3k,PC=5k,
∵tan∠PGC=,
∴FG=6k,
∴CG=2k,PG=3k,
∴RC=k,RG=k,PR=3k-k=k,
∴,
∴a1=0(舍去),a2=,
xP=,-a2+a+2=,即P(,),
综上所述:P点坐标是(2,3)或(,).
【点睛】
本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用相似三角形的判定与性质得出,又利用了二次函数的性质;解(3)的关键是利用解直角三角形,要分类讨论,以防遗漏.
24、(1)PM=PN,PM⊥PN(2)等腰直角三角形,理由见解析(3)
【解析】
(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;
(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;
(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出当BD的值最大时,PM的值最大,△PMN的面积最大,推出当B、C、D共线时,BD的最大值=BC+CD=6,由此即可解决问题;
【详解】
解:(1)PM=PN,PM⊥PN,理由如下:
延长AE交BD于O,
∵△ACB和△ECD是等腰直角三角形,
∴AC=BC,EC=CD,∠ACB=∠ECD=90°.
在△ACE和△BCD中
,
∴△ACE≌△BCD(SAS),
∴AE=BD,∠EAC=∠CBD,
∵∠EAC+∠AEC=90°,∠AEC=∠BEO,
∴∠CBD+∠BEO=90°,
∴∠BOE=90°,即AE⊥BD,
∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,
∴PM=BD,PN=AE,
∴PM=PM,
∵PM∥BD,PN∥AE,AE⊥BD,
∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,
∴∠MPA+∠NPC=90°,
∴∠MPN=90°,
即PM⊥PN,
故答案是:PM=PN,PM⊥PN;
(2)如图②中,设AE交BC于O,
∵△ACB和△ECD是等腰直角三角形,
∴AC=BC,EC=CD,
∠ACB=∠ECD=90°,
∴∠ACB+∠BCE=∠ECD+∠BCE,
∴∠ACE=∠BCD,
∴△ACE≌△BCD,
∴AE=BD,∠CAE=∠CBD,
又∵∠AOC=∠BOE,
∠CAE=∠CBD,
∴∠BHO=∠ACO=90°,
∵点P、M、N分别为AD、AB、DE的中点,
∴PM=BD,PM∥BD,
PN=AE,PN∥AE,
∴PM=PN,
∴∠MGE+∠BHA=180°,
∴∠MGE=90°,
∴∠MPN=90°,
∴PM⊥PN;
(3)由(2)可知△PMN是等腰直角三角形,PM=BD,
∴当BD的值最大时,PM的值最大,△PMN的面积最大,
∴当B、C、D共线时,BD的最大值=BC+CD=6,
∴PM=PN=3,
∴△PMN的面积的最大值=×3×3=.
【点睛】
本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形中位线定理的运用,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.
河南省濮阳市台前县重点中学2021-2022学年中考数学模拟预测试卷含解析: 这是一份河南省濮阳市台前县重点中学2021-2022学年中考数学模拟预测试卷含解析,共23页。试卷主要包含了下列说法正确的是,下面的几何体中,主,已知一组数据等内容,欢迎下载使用。
河南省平顶山市重点达标名校2022年中考数学模拟预测试卷含解析: 这是一份河南省平顶山市重点达标名校2022年中考数学模拟预测试卷含解析,共22页。试卷主要包含了下列计算错误的是等内容,欢迎下载使用。
包头市和平中学2021-2022学年中考数学模拟预测试卷含解析: 这是一份包头市和平中学2021-2022学年中考数学模拟预测试卷含解析,共20页。试卷主要包含了的相反数是,下列计算正确的是,初三等内容,欢迎下载使用。