河南省平顶山市重点达标名校2022年中考数学模拟预测试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.函数(为常数)的图像上有三点,,,则函数值的大小关系是( )
A.y3<y1<y2 B.y3<y2<y1 C.y1<y2<y3 D.y2<y3<y1
2.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )
A. B. C. D.
3.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。”大致意思是:“用一根绳子去量一根木条,绳长剩余4.5尺,将绳子对折再量木条,木条剩余一尺,问木条长多少尺”,设绳子长尺,木条长尺,根据题意所列方程组正确的是( )
A. B. C. D.
4.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠CDE的大小是( )
A.40° B.43° C.46° D.54°
5.下列函数中,当x>0时,y值随x值增大而减小的是( )
A.y=x2 B.y=x﹣1 C. D.
6.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是抛物线上两点,则y1<y2,其中结论正确的是( )
A.①② B.②③ C.②④ D.①③④
7.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )
A.3a+2b B.3a+4b C.6a+2b D.6a+4b
8.已知一次函数y=kx+3和y=k1x+5,假设k<0且k1>0,则这两个一次函数的图像的交点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
9.下列计算错误的是( )
A.4x3•2x2=8x5 B.a4﹣a3=a
C.(﹣x2)5=﹣x10 D.(a﹣b)2=a2﹣2ab+b2
10.在平面直角坐标系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017 D2017的边长是( )
A.()2016 B.()2017 C.()2016 D.()2017
二、填空题(共7小题,每小题3分,满分21分)
11.等腰中,是BC边上的高,且,则等腰底角的度数为__________.
12.计算tan260°﹣2sin30°﹣cos45°的结果为_____.
13.如图,在矩形ABCD中,AD=2,CD=1,连接AC,以对角线AC为边,按逆时针方向作矩形ABCD的相似矩形AB1C1C,再连接AC1,以对角线AC1为边作矩形AB1C1C的相似矩形AB2C2C1,…,按此规律继续下去,则矩形ABnCnCn-1的面积为________________.
14.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______.
15.北京奥运会国家体育场“鸟巢”的建筑面积为258000平方米,那么258000用科学记数法可表示为 .
16.反比例函数的图象经过点(﹣3,2),则k的值是_____.当x大于0时,y随x的增大而_____.(填增大或减小)
17.已知⊙O半径为1,A、B在⊙O上,且,则AB所对的圆周角为__o.
三、解答题(共7小题,满分69分)
18.(10分)计算:2tan45°-(-)º-
19.(5分)服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.
(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?
(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0 20.(8分)如图,在中,,以边为直径作⊙交边于点,过点作于点,、的延长线交于点.
求证:是⊙的切线;若,且,求⊙的半径与线段的长.
21.(10分)已知△ABC内接于⊙O,AD平分∠BAC.
(1)如图1,求证:;
(2)如图2,当BC为直径时,作BE⊥AD于点E,CF⊥AD于点F,求证:DE=AF;
(3)如图3,在(2)的条件下,延长BE交⊙O于点G,连接OE,若EF=2EG,AC=2,求OE的长.
22.(10分)如图,在△ABC中,∠ABC=90°,BD为AC边上的中线.
(1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C作直线CE,使CE⊥BC于点C,交BD的延长线于点E,连接AE;
(2)求证:四边形ABCE是矩形.
23.(12分)解方程
(1);(2)
24.(14分)已知AC=DC,AC⊥DC,直线MN经过点A,作DB⊥MN,垂足为B,连接CB.
(1)直接写出∠D与∠MAC之间的数量关系;
(2)①如图1,猜想AB,BD与BC之间的数量关系,并说明理由;
②如图2,直接写出AB,BD与BC之间的数量关系;
(3)在MN绕点A旋转的过程中,当∠BCD=30°,BD=时,直接写出BC的值.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
试题解析:∵函数y=(a为常数)中,-a1-1<0,
∴函数图象的两个分支分别在二、四象限,在每一象限内y随x的增大而增大,
∵>0,
∴y3<0;
∵-<-,
∴0<y1<y1,
∴y3<y1<y1.
故选A.
2、C
【解析】
严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.
【详解】
根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直.
故选C.
【点睛】
本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
3、A
【解析】
本题的等量关系是:绳长-木长=4.5;木长-×绳长=1,据此列方程组即可求解.
【详解】
设绳子长x尺,木条长y尺,依题意有
.
故选A.
【点睛】
本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.
4、C
【解析】
根据DE∥AB可求得∠CDE=∠B解答即可.
【详解】
解:∵DE∥AB,
∴∠CDE=∠B=46°,
故选:C.
【点睛】
本题主要考查平行线的性质:两直线平行,同位角相等.快速解题的关键是牢记平行线的性质.
5、D
【解析】
A、、∵y=x2,∴对称轴x=0,当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x的增大而减小,故此选项错误
B、k>0,y随x增大而增大,故此选项错误
C、B、k>0,y随x增大而增大,故此选项错误
D、y=(x>0),反比例函数,k>0,故在第一象限内y随x的增大而减小,故此选项正确
6、C
【解析】
试题分析:根据题意可得:a0,b0,c0,则abc0,则①错误;根据对称轴为x=1可得:=1,则-b=2a,即2a+b=0,则②正确;根据函数的轴对称可得:当x=2时,y0,即4a+2b+c0,则③错误;对于开口向下的函数,离对称轴越近则函数值越大,则,则④正确.
点睛:本题主要考查的就是二次函数的性质,属于中等题.如果开口向上,则a0,如果开口向下,则a0;如果对称轴在y轴左边,则b的符号与a相同,如果对称轴在y轴右边,则b的符号与a相反;如果题目中出现2a+b和2a-b的时候,我们要看对称轴与1或者-1的大小关系再进行判定;如果出现a+b+c,则看x=1时y的值;如果出现a-b+c,则看x=-1时y的值;如果出现4a+2b+c,则看x=2时y的值,以此类推;对于开口向上的函数,离对称轴越远则函数值越大,对于开口向下的函数,离对称轴越近则函数值越大.
7、A
【解析】
根据这块矩形较长的边长=边长为3a的正方形的边长-边长为2b的小正方形的边长+边长为2b的小正方形的边长的2倍代入数据即可.
【详解】
依题意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.
故这块矩形较长的边长为3a+2b.故选A.
【点睛】
本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键.
8、B
【解析】
依题意在同一坐标系内画出图像即可判断.
【详解】
根据题意可作两函数图像,由图像知交点在第二象限,故选B.
【点睛】
此题主要考查一次函数的图像,解题的关键是根据题意作出相应的图像.
9、B
【解析】
根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)1=a1±1ab+b1.可巧记为:“首平方,末平方,首末两倍中间放”可得答案.
【详解】
A选项:4x3•1x1=8x5,故原题计算正确;
B选项:a4和a3不是同类项,不能合并,故原题计算错误;
C选项:(-x1)5=-x10,故原题计算正确;
D选项:(a-b)1=a1-1ab+b1,故原题计算正确;
故选:B.
【点睛】
考查了整式的乘法,关键是掌握整式的乘法各计算法则.
10、C
【解析】
利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.
解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…
∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,
∴D1E1=C1D1sin30°=,则B2C2===()1,
同理可得:B3C3==()2,
故正方形AnBnCnDn的边长是:()n﹣1.
则正方形A2017B2017C2017D2017的边长是:()2.
故选C.
“点睛”此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.
二、填空题(共7小题,每小题3分,满分21分)
11、,,
【解析】
分三种情况:①点A是顶角顶点时,②点A是底角顶点,且AD在△ABC外部时,③点A是底角顶点,且AD在△ABC内部时,再结合直角三角形中,30°的角所对的直角边等于斜边的一半即可求解.
【详解】
①如图,若点A是顶角顶点时,
∵AB=AC,AD⊥BC,
∴BD=CD,∵,
∴AD=BD=CD,
在Rt△ABD中,∠B=∠BAD=
;
②如图,若点A是底角顶点,且AD在△ABC外部时,
∵,AC=BC,
∴,
∴∠ACD=30°,
∴∠BAC=∠ABC=×30°=15°;
③如图,若点A是底角顶点,且AD在△ABC内部时,
∵,AC=BC,
∴,
∴∠C=30°,
∴∠BAC=∠ABC=(180°-30°)=75°;
综上所述,△ABC底角的度数为45°或15°或75°;
故答案为,,.
【点睛】
本题考查了等腰三角形的性质和直角三角形中30°的角所对的直角边等于斜边的一半的性质,解题的关键是要分情况讨论.
12、1
【解析】
分别算三角函数,再化简即可.
【详解】
解:原式=-2×-×
=1.
【点睛】
本题考查掌握简单三角函数值,较基础.
13、或
【解析】
试题分析:AC===,因为矩形都相似,且每相邻两个矩形的相似比=,∴=2×1=2,=,===,
...,==...===.
故答案为.
考点:1.相似多边形的性质;2.勾股定理;3.规律型;4.矩形的性质;5.综合题.
14、2
【解析】
分析:∵由主视图得出长方体的长是6,宽是2,这个几何体的体积是16,
∴设高为h,则6×2×h=16,解得:h=1.
∴它的表面积是:2×1×2+2×6×2+1×6×2=2.
15、2.58×1
【解析】
科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.258 000=2.58×1.
16、﹣6 增大
【解析】
∵反比例函数的图象经过点(﹣3,2),
∴2=,即k=2×(﹣3)=﹣6,
∴k<0,则y随x的增大而增大.
故答案为﹣6;增大.
【点睛】
本题考查用待定系数法求反函数解析式与反比例函数的性质:
(1)当k>0时,函数图象在一,三象限,在每个象限内,y随x的增大而减小;
(2)当k<0时,函数图象在二,四象限,在每个象限内,y随x的增大而增大.
17、45º或135º
【解析】
试题解析:如图所示,
∵OC⊥AB,
∴C为AB的中点,即
在Rt△AOC中,OA=1,
根据勾股定理得:即OC=AC,
∴△AOC为等腰直角三角形,
同理
∵∠AOB与∠ADB都对,
∵大角
则弦AB所对的圆周角为或
故答案为或
三、解答题(共7小题,满分69分)
18、2-
【解析】
先求三角函数,再根据实数混合运算法计算.
【详解】
解:原式=2×1-1-=1+1-=2-
【点睛】
此题重点考察学生对三角函数值的应用,掌握特殊角的三角函数值是解题的关键.
19、(1)甲种服装最多购进75件,(2)见解析.
【解析】
(1)设甲种服装购进x件,则乙种服装购进(100-x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式解答即可;
(2)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.
【详解】
(1)设购进甲种服装x件,由题意可知:80x+60(100-x)≤7500,解得x≤75
答:甲种服装最多购进75件,
(2)设总利润为W元,
W=(120-80-a)x+(90-60)(100-x)
即w=(10-a)x+1.
①当0<a<10时,10-a>0,W随x增大而增大,
∴当x=75时,W有最大值,即此时购进甲种服装75件,乙种服装25件;
②当a=10时,所以按哪种方案进货都可以;
③当10<a<20时,10-a<0,W随x增大而减小.
当x=65时,W有最大值,即此时购进甲种服装65件,乙种服装35件.
【点睛】
本题考查了一元一次方程的应用,不等式的应用,以及一次函数的性质,正确利用x表示出利润是关键.
20、(1)证明参见解析;(2)半径长为,=.
【解析】
(1)已知点D在圆上,要连半径证垂直,连结,则,所以,∵,∴.∴,∴∥.由得出,于是得出结论;(2)由得到,设,则.,,,由,解得值,进而求出圆的半径及AE长.
【详解】
解:(1)已知点D在圆上,要连半径证垂直,如图2所示,连结,∵,∴.∵,∴.∴,∴∥.∵,∴.∴是⊙的切线;(2)在和中,∵,∴. 设,则.∴,.∵,∴.∴,解得=,则3x=,AE=6×-=6,∴⊙的半径长为,=.
【点睛】
1.圆的切线的判定;2.锐角三角函数的应用.
21、(1)证明见解析;(1)证明见解析;(3)1.
【解析】
(1)连接OB、OC、OD,根据圆心角与圆周角的性质得∠BOD=1∠BAD,∠COD=1∠CAD,又AD平分∠BAC,得∠BOD=∠COD,再根据圆周角相等所对的弧相等得出结论.
(1)过点O作OM⊥AD于点M,又一组角相等,再根据平行线的性质得出对应边成比例,进而得出结论;
(3)延长EO交AB于点H,连接CG,连接OA,BC为⊙O直径,则∠G=∠CFE=∠FEG=90°,四边形CFEG是矩形,得EG=CF,又AD平分∠BAC,再根据邻补角与余角的性质可得∠BAF=∠ABE,∠ACF=∠CAF,AE=BE,AF=CF,再根据直角三角形的三角函数计算出边的长,根据“角角边”证明出△HBO∽△ABC,根据相似三角形的性质得出对应边成比例,进而得出结论.
【详解】
(1)如图1,连接OB、OC、OD,
∵∠BAD和∠BOD是所对的圆周角和圆心角,
∠CAD和∠COD是所对的圆周角和圆心角,
∴∠BOD=1∠BAD,∠COD=1∠CAD,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠BOD=∠COD,
∴=;
(1)如图1,过点O作OM⊥AD于点M,
∴∠OMA=90°,AM=DM,
∵BE⊥AD于点E,CF⊥AD于点F,
∴∠CFM=90°,∠MEB=90°,
∴∠OMA=∠MEB,∠CFM=∠OMA,
∴OM∥BE,OM∥CF,
∴BE∥OM∥CF,
∴,
∵OB=OC,
∴=1,
∴FM=EM,
∴AM﹣FM=DM﹣EM,
∴DE=AF;
(3)延长EO交AB于点H,连接CG,连接OA.
∵BC为⊙O直径,
∴∠BAC=90°,∠G=90°,
∴∠G=∠CFE=∠FEG=90°,
∴四边形CFEG是矩形,
∴EG=CF,
∵AD平分∠BAC,
∴∠BAF=∠CAF=×90°=45°,
∴∠ABE=180°﹣∠BAF﹣∠AEB=45°,
∠ACF=180°﹣∠CAF﹣∠AFC=45°,
∴∠BAF=∠ABE,∠ACF=∠CAF,
∴AE=BE,AF=CF,
在Rt△ACF中,∠AFC=90°,
∴sin∠CAF=,即sin45°=,
∴CF=1×=,
∴EG=,
∴EF=1EG=1,
∴AE=3,
在Rt△AEB中,∠AEB=90°,
∴AB==6,
∵AE=BE,OA=OB,
∴EH垂直平分AB,
∴BH=EH=3,
∵∠OHB=∠BAC,∠ABC=∠ABC
∴△HBO∽△ABC,
∴,
∴OH=1,
∴OE=EH﹣OH=3﹣1=1.
【点睛】
本题考查了相似三角形的判定与性质和圆的相关知识点,解题的关键是熟练的掌握相似三角形的判定与性质和圆的相关知识点.
22、 (1)见解析;(2)见解析.
【解析】
(1)根据题意作图即可;
(2)先根据BD为AC边上的中线,AD=DC,再证明△ABD≌△CED(AAS)得AB=EC,已知∠ABC=90°即可得四边形ABCE是矩形.
【详解】
(1)解:如图所示:E点即为所求;
(2)证明:∵CE⊥BC,
∴∠BCE=90°,
∵∠ABC=90°,
∴∠BCE+∠ABC=180°,
∴AB∥CE,
∴∠ABE=∠CEB,∠BAC=∠ECA,
∵BD为AC边上的中线,
∴AD=DC,
在△ABD和△CED中
,
∴△ABD≌△CED(AAS),
∴AB=EC,
∴四边形ABCE是平行四边形,
∵∠ABC=90°,
∴平行四边形ABCE是矩形.
【点睛】
本题考查了全等三角形的判定与性质与矩形的性质,解题的关键是熟练的掌握全等三角形的判定与性质与矩形的性质.
23、(1),;(2),.
【解析】
(1)利用公式法求解可得;
(2)利用因式分解法求解可得.
【详解】
(1)解:∵,,,
∴,
∴,
∴,;
(2)解:原方程化为:,
因式分解得:,
整理得:,
∴或,
∴,.
【点睛】
本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.
24、(1)相等或互补;(2)①BD+AB=BC;②AB﹣BD=BC;(3)BC= 或.
【解析】
(1)分为点C,D在直线MN同侧和点C,D在直线MN两侧,两种情况讨论即可解题,
(2)①作辅助线,证明△BCD≌△FCA,得BC=FC,∠BCD=∠FCA,∠FCB=90°,即△BFC是等腰直角三角形,即可解题, ②在射线AM上截取AF=BD,连接CF,证明△BCD≌△FCA,得△BFC是等腰直角三角形,即可解题,
(3)分为当点C,D在直线MN同侧,当点C,D在直线MN两侧,两种情况解题即可,见详解.
【详解】
解:(1)相等或互补;
理由:当点C,D在直线MN同侧时,如图1,
∵AC⊥CD,BD⊥MN,
∴∠ACD=∠BDC=90°,
在四边形ABDC中,∠BAD+∠D=360°﹣∠ACD﹣∠BDC=180°,
∵∠BAC+∠CAM=180°,
∴∠CAM=∠D;
当点C,D在直线MN两侧时,如图2,
∵∠ACD=∠ABD=90°,∠AEC=∠BED,
∴∠CAB=∠D,
∵∠CAB+∠CAM=180°,
∴∠CAM+∠D=180°,
即:∠D与∠MAC之间的数量是相等或互补;
(2)①猜想:BD+AB=BC
如图3,在射线AM上截取AF=BD,连接CF.
又∵∠D=∠FAC,CD=AC
∴△BCD≌△FCA,
∴BC=FC,∠BCD=∠FCA
∵AC⊥CD
∴∠ACD=90°
即∠ACB+∠BCD=90°
∴∠ACB+∠FCA=90°
即∠FCB=90°
∴BF=
∵AF+AB=BF=
∴BD+AB=;
②如图2,在射线AM上截取AF=BD,连接CF,
又∵∠D=∠FAC,CD=AC
∴△BCD≌△FCA,
∴BC=FC,∠BCD=∠FCA
∵AC⊥CD
∴∠ACD=90°
即∠ACB+∠BCD=90°
∴∠ACB+∠FCA=90°
即∠FCB=90°
∴BF=
∵AB﹣AF=BF=
∴AB﹣BD=;
(3)①当点C,D在直线MN同侧时,如图3﹣1,
由(2)①知,△ACF≌△DCB,
∴CF=BC,∠ACF=∠ACD=90°,
∴∠ABC=45°,
∵∠ABD=90°,
∴∠CBD=45°,
过点D作DG⊥BC于G,
在Rt△BDG中,∠CBD=45°,BD=,
∴DG=BG=1,
在Rt△CGD中,∠BCD=30°,
∴CG=DG=,
∴BC=CG+BG=+1,
②当点C,D在直线MN两侧时,如图2﹣1,
过点D作DG⊥CB交CB的延长线于G,
同①的方法得,BG=1,CG=,
∴BC=CG﹣BG=﹣1
即:BC= 或,
【点睛】
本题考查了三角形中的边长关系,等腰直角三角形的性质,中等难度,分类讨论与作辅助线是解题关键.
河南省周口市淮阳县重点达标名校2021-2022学年中考数学模拟预测题含解析: 这是一份河南省周口市淮阳县重点达标名校2021-2022学年中考数学模拟预测题含解析,共19页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。
2022年河南省漯河市临颍县重点达标名校中考数学模拟预测题含解析: 这是一份2022年河南省漯河市临颍县重点达标名校中考数学模拟预测题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
2022届北京市各区重点达标名校中考数学模拟预测试卷含解析: 这是一份2022届北京市各区重点达标名校中考数学模拟预测试卷含解析,共19页。试卷主要包含了下列解方程去分母正确的是等内容,欢迎下载使用。