2021-2022学年河北省易县市级名校中考联考数学试题含解析
展开1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,等腰三角形ABC底边BC的长为4 cm,面积为12 cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则△BDM的周长最小值为( )
A.5 cmB.6 cmC.8 cmD.10 cm
2.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是( )
A.20°B.35°C.40°D.70°
3.如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是( )
A.30°B.15°C.18°D.20°
4.下列运算正确的是( )
A.2a+3a=5a2 B.(a3)3=a9 C.a2•a4=a8 D.a6÷a3=a2
5.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为( )
A.2πB.4πC.5πD.6π
6.在六张卡片上分别写有,π,1.5,5,0,六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )
A.B.C.D.
7.如图,共有12个大不相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分.现从其余的小正方形中任取一个涂上阴影,则能构成这个正方体的表面展开图的概率是( )
A.B.C.D.
8.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是( )
①b<0<a; ②|b|<|a|; ③ab>0; ④a﹣b>a+b.
A.①②B.①④C.②③D.③④
9.估计﹣1的值在( )
A.1和2之间B.2和3之间C.3和4之间D.4和5之间
10.已知∠BAC=45。,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC有公共点,那么x的取值范围是( )
A.0<x≤1B.1≤x<C.0<x≤D.x>
二、填空题(本大题共6个小题,每小题3分,共18分)
11.今年,某县境内跨湖高速进入施工高峰期,交警队为提醒出行车辆,在一些主要路口设立了交通路况警示牌(如图).已知立杆AD高度是4m,从侧面C点测得警示牌顶端点A和底端B点的仰角(∠ACD和∠BCD)分别是60°,45°.那么路况警示牌AB的高度为_____.
12.用换元法解方程,设y=,那么原方程化为关于y的整式方程是_____.
13.计算:6﹣=_____
14.如图,在Rt△ABC中,∠BAC=90°,AB=AC=4,D是BC的中点,点E在BA的延长线上,连接ED,若AE=2,则DE的长为_____.
15.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.
16.若a2﹣2a﹣4=0,则5+4a﹣2a2=_____.
三、解答题(共8题,共72分)
17.(8分)已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣x+b与抛物线的另一个交点为D.
(1)若点D的横坐标为2,求抛物线的函数解析式;
(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;
(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?
18.(8分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.求证:DE是⊙O的切线;当⊙O半径为3,CE=2时,求BD长.
19.(8分)先化简,再求值:(1+)÷,其中x=+1.
20.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:
接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 度;请补全条形统计图;若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.
21.(8分)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)
(1)求这7天内小申家每天用水量的平均数和中位数;
(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;
(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.
22.(10分)(1)计算:(﹣2)﹣2+cs60°﹣(﹣2)0;
(2)化简:(a﹣)÷ .
23.(12分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C(0,2)
(1)求抛物线的表达式;
(2)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线的对称轴上是否存在点P,使△BMP与△ABD相似?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.
24.在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,连接AD,求∠ADB的度数.(不必解答)
小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图1),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.
请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是 三角形;∠ADB的度数为 .在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=1.请直接写出线段BE的长为 .
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.
【详解】
如图,连接AD.
∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得:AD=6(cm).
∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).
故选C.
【点睛】
本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
2、B
【解析】
先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.
【详解】
∵AD是△ABC的中线,AB=AC,∠CAD=20°,
∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.
∵CE是△ABC的角平分线,
∴∠ACE=∠ACB=35°.
故选B.
【点睛】
本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.
3、C
【解析】
∠1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.
【详解】
∵正五边形的内角的度数是×(5-2)×180°=108°,正方形的内角是90°,
∴∠1=108°-90°=18°.故选C
【点睛】
本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键.
4、B
【解析】
直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别化简得出答案.
【详解】
A、2a+3a=5a,故此选项错误;
B、(a3)3=a9,故此选项正确;
C、a2•a4=a6,故此选项错误;
D、a6÷a3=a3,故此选项错误.
故选:B.
【点睛】
此题主要考查了同底数幂的乘除运算以及合并同类项和幂的乘方运算,正确掌握运算法则是解题关键.
5、B
【解析】
连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.
【详解】
连接OA、OC,
∵∠ADC=60°,
∴∠AOC=2∠ADC=120°,
则劣弧AC的长为: =4π.
故选B.
【点睛】
本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式 .
6、B
【解析】
无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.
【详解】
∵这组数中无理数有,共2个,
∴卡片上的数为无理数的概率是 .
故选B.
【点睛】
本题考查了无理数的定义及概率的计算.
7、D
【解析】
由正方体表面展开图的形状可知,此正方体还缺一个上盖,故应在图中四块相连的空白正方形中选一块,再根据概率公式解答即可.
【详解】
因为共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,所以剩下7个小正方形.
在其余的7个小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的小正方形有4个,因此先从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是.
故选D.
【点睛】
本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比,掌握概率公式是本题的关键.
8、B
【解析】
分析:本题是考察数轴上的点的大小的关系.
解析:由图知,b<0|a|,故②错误,因为b<0a+b,所以④正确.
故选B.
9、B
【解析】
根据,可得答案.
【详解】
解:∵,
∴,
∴
∴﹣1的值在2和3之间.
故选B.
【点睛】
本题考查了估算无理数的大小,先确定的大小,在确定答案的范围.
10、C
【解析】
如下图,设⊙O与射线AC相切于点D,连接OD,
∴∠ADO=90°,
∵∠BAC=45°,
∴△ADO是等腰直角三角形,
∴AD=DO=1,
∴OA=,此时⊙O与射线AC有唯一公共点点D,若⊙O再向右移动,则⊙O与射线AC就没有公共点了,
∴x的取值范围是.
故选C.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、m
【解析】
由特殊角的正切值即可得出线段CD的长度,在Rt△BDC中,由∠BCD=45°,得出CD=BD,求出BD长度,再利用线段间的关系即可得出结论.
【详解】
在Rt△ADC中,∠ACD=60°,AD=4
∴tan60°==
∴CD=
∵在Rt△BCD中,∠BAD=45∘,CD=
∴BD=CD=.
∴AB=AD-BD=4-=
路况警示牌AB的高度为m.
故答案为:m.
【点睛】
解直角三角形的应用-仰角俯角问题.
12、6y2-5y+2=0
【解析】
根据y=,将方程变形即可.
【详解】
根据题意得:3y+,
得到6y2-5y+2=0
故答案为6y2-5y+2=0
【点睛】
此题考查了换元法解分式方程,利用了整体的思想,将方程进行适当的变形是解本题的关键.
13、3
【解析】
按照二次根式的运算法则进行运算即可.
【详解】
【点睛】
本题考查的知识点是二次根式的运算,解题关键是注意化简算式.
14、2
【解析】
过点E作EF⊥BC于F,根据已知条件得到△BEF是等腰直角三角形,求得BE=AB+AE=6,根据勾股定理得到BF=EF=3,求得DF=BF−BD=,根据勾股定理即可得到结论.
【详解】
解:过点E作EF⊥BC于F,
∴∠BFE=90°,
∵∠BAC=90°,AB=AC=4,
∴∠B=∠C=45°,BC=4,
∴△BEF是等腰直角三角形,
∵BE=AB+AE=6,
∴BF=EF=3,
∵D是BC的中点,
∴BD=2,
∴DF=BF−BD,
∴DE===2.
故答案为2.
【点睛】
本题考查了等腰直角三角形的性质,勾股定理,正确的作出辅助线构造等腰直角三角形是解题的关键.
15、1
【解析】
底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.
【详解】
试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.
②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=1cm.
故填1.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.
16、-3
【解析】
试题解析:∵ 即
∴原式
故答案为
三、解答题(共8题,共72分)
17、(1)y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)(﹣4,﹣)和(﹣6,﹣3)(3)(1,﹣4).
【解析】
试题分析:(1)根据二次函数的交点式确定点A、B的坐标,求出直线的解析式,求出点D的坐标,求出抛物线的解析式;(2)作PH⊥x轴于H,设点P的坐标为(m,n),分△BPA∽△ABC和△PBA∽△ABC,根据相似三角形的性质计算即可;(3)作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,根据正切的定义求出Q的运动时间t=BE+EF时,t最小即可.
试题解析:(1)∵y=a(x+3)(x﹣1),
∴点A的坐标为(﹣3,0)、点B两的坐标为(1,0),
∵直线y=﹣x+b经过点A,
∴b=﹣3,
∴y=﹣x﹣3,
当x=2时,y=﹣5,
则点D的坐标为(2,﹣5),
∵点D在抛物线上,
∴a(2+3)(2﹣1)=﹣5,
解得,a=﹣,
则抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;
(2)作PH⊥x轴于H,
设点P的坐标为(m,n),
当△BPA∽△ABC时,∠BAC=∠PBA,
∴tan∠BAC=tan∠PBA,即=,
∴=,即n=﹣a(m﹣1),
∴,
解得,m1=﹣4,m2=1(不合题意,舍去),
当m=﹣4时,n=5a,
∵△BPA∽△ABC,
∴=,即AB2=AC•PB,
∴42=•,
解得,a1=(不合题意,舍去),a2=﹣,
则n=5a=﹣,
∴点P的坐标为(﹣4,﹣);
当△PBA∽△ABC时,∠CBA=∠PBA,
∴tan∠CBA=tan∠PBA,即=,
∴=,即n=﹣3a(m﹣1),
∴,
解得,m1=﹣6,m2=1(不合题意,舍去),
当m=﹣6时,n=21a,
∵△PBA∽△ABC,
∴=,即AB2=BC•PB,
∴42=•,
解得,a1=(不合题意,舍去),a2=﹣,
则点P的坐标为(﹣6,﹣),
综上所述,符合条件的点P的坐标为(﹣4,﹣)和(﹣6,﹣);
(3)作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,
则tan∠DAN===,
∴∠DAN=60°,
∴∠EDF=60°,
∴DE==EF,
∴Q的运动时间t=+=BE+EF,
∴当BE和EF共线时,t最小,
则BE⊥DM,E(1,﹣4).
考点:二次函数综合题.
18、(1)证明见解析;(2)BD=2.
【解析】
(1)连接OD,AB为⊙0的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;
(2)由∠B=∠C,∠CED=∠BDA=90°,得出△DEC∽△ADB,得出,从而求得BD•CD=AB•CE,由BD=CD,即可求得BD2=AB•CE,然后代入数据即可得到结果.
【详解】
(1)证明:连接OD,如图,
∵AB为⊙0的直径,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴AD平分BC,即DB=DC,
∵OA=OB,
∴OD为△ABC的中位线,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∴DE是⊙0的切线;
(2)∵∠B=∠C,∠CED=∠BDA=90°,
∴△DEC∽△ADB,
∴,
∴BD•CD=AB•CE,
∵BD=CD,
∴BD2=AB•CE,
∵⊙O半径为3,CE=2,
∴BD==2.
【点睛】
本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了等腰三角形的性质、三角形相似的判定和性质.
19、,1+
【解析】
运用公式化简,再代入求值.
【详解】
原式=
=
= ,
当x=+1时,
原式=.
【点睛】
考查分式的化简求值、整式的化简求值,解答本题的关键是明确它们各自的计算方法.
20、 (1) 60,90;(2)见解析;(3) 300人
【解析】
(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;
(2)由(1)可求得了解的人数,继而补全条形统计图;
(3)利用样本估计总体的方法,即可求得答案.
【详解】
解:(1)∵了解很少的有30人,占50%,
∴接受问卷调查的学生共有:30÷50%=60(人);
∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;
故答案为60,90;
(2)60﹣15﹣30﹣10=5;
补全条形统计图得:
(3)根据题意得:900×=300(人),
则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.
【点睛】
本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.
21、(1)平均数为800升,中位数为800升;(2)12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,一个月估计可以节约用水3000升.
【解析】
试题分析:(1)根据平均数和中位数的定义求解可得;
(2)用洗衣服的水量除以第3天的用水总量即可得;
(3)根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所.
试题解析:解:(1)这7天内小申家每天用水量的平均数为(815+780+800+785+790+825+805)÷7=800(升),
将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,
∴用水量的中位数为800升;
(2)×100%=12.5%.
答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;
(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水100×30=3000升.
22、(1);(2);
【解析】
(1)根据负整数指数幂、特殊角的三角函数值、零指数幂可以解答本题;
(2)根据分式的减法和除法可以解答本题.
【详解】
解:(1)原式
(2)原式
【点睛】
本题考查分式的混合运算、实数的运算、负整数指数幂、特殊角的三角函数值、零指数幂,解答本题的关键是明确它们各自的计算方法.
23、 (1)y=﹣x2+x+2;(2)满足条件的点P的坐标为(,)或(,﹣)或(,5)或(,﹣5).
【解析】
(1)利用待定系数法求抛物线的表达式;
(2)使△BMP与△ABD相似的有三种情况,分别求出这三个点的坐标.
【详解】
(1)∵抛物线与x轴交于点A(﹣1,0),B(4,0),
∴设抛物线的解析式为y=a(x+1)(x﹣4),
∵抛物线与y轴交于点C(0,2),
∴a×1×(﹣4)=2,
∴a=﹣,
∴抛物线的解析式为y=﹣(x+1)(x﹣4)=﹣x2+x+2;
(2)如图1,连接CD,∵抛物线的解析式为y=﹣x2+x+2,
∴抛物线的对称轴为直线x=,
∴M(,0),∵点D与点C关于点M对称,且C(0,2),
∴D(3,﹣2),
∵MA=MB,MC=MD,
∴四边形ACBD是平行四边形,
∵A(﹣1,0),B(4,0),C(3,﹣22),
∴AB2=25,BD2=(4﹣1)2+22=5,AD2=(3+1)2+22=20,
∴AD2+BD2=AB2,
∴△ABD是直角三角形,
∴∠ADB=90°,
设点P(,m),
∴MP=|m|,
∵M(,0),B(4,0),
∴BM=,
∵△BMP与△ABD相似,
∴①当△BMP∽ADB时,
∴,
∴,
∴m=±,
∴P(,)或(,﹣),
②当△BMP∽△BDA时,
,
∴,
∴m=±5,
∴P(,5)或(,﹣5),
即:满足条件的点P的坐标为P(,)或(,﹣)或(,5)或(,﹣5).
【点睛】
本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.
24、(1)①△D′BC是等边三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣
【解析】
(1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等边三角形;
②借助①的结论,再判断出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解决问题.
(1)当60°<α≤110°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1).
(3)第①种情况:当60°<α≤110°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.
【详解】
(1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,
∵AB=AC,∠BAC=90°,
∴∠ABC=45°,
∵∠DBC=30°,
∴∠ABD=∠ABC﹣∠DBC=15°,
在△ABD和△ABD′中,
∴△ABD≌△ABD′,
∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,
∴∠D′BC=∠ABD′+∠ABC=60°,
∵BD=BD′,BD=BC,
∴BD′=BC,
∴△D′BC是等边三角形,
②∵△D′BC是等边三角形,
∴D′B=D′C,∠BD′C=60°,
在△AD′B和△AD′C中,
∴△AD′B≌△AD′C,
∴∠AD′B=∠AD′C,
∴∠AD′B=∠BD′C=30°,
∴∠ADB=30°.
(1)∵∠DBC<∠ABC,
∴60°<α≤110°,
如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,
∵AB=AC,
∴∠ABC=∠ACB,
∵∠BAC=α,
∴∠ABC=(180°﹣α)=90°﹣α,
∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,
同(1)①可证△ABD≌△ABD′,
∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B
∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),
∵α+β=110°,
∴∠D′BC=60°,
由(1)②可知,△AD′B≌△AD′C,
∴∠AD′B=∠AD′C,
∴∠AD′B=∠BD′C=30°,
∴∠ADB=30°.
(3)第①情况:当60°<α<110°时,如图3﹣1,
由(1)知,∠ADB=30°,
作AE⊥BD,
在Rt△ADE中,∠ADB=30°,AD=1,
∴DE=,
∵△BCD'是等边三角形,
∴BD'=BC=7,
∴BD=BD'=7,
∴BE=BD﹣DE=7﹣;
第②情况:当0°<α<60°时,
如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.
同理可得:∠ABC=(180°﹣α)=90°﹣α,
∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),
同(1)①可证△ABD≌△ABD′,
∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,
∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),
∴D′B=D′C,∠BD′C=60°.
同(1)②可证△AD′B≌△AD′C,
∴∠AD′B=∠AD′C,
∵∠AD′B+∠AD′C+∠BD′C=360°,
∴∠ADB=∠AD′B=150°,
在Rt△ADE中,∠ADE=30°,AD=1,
∴DE=,
∴BE=BD+DE=7+,
故答案为:7+或7﹣.
【点睛】
此题是三角形综合题,主要考查全等三角形的判定和性质.等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
河北省保定市级名校2021-2022学年中考冲刺卷数学试题含解析: 这是一份河北省保定市级名校2021-2022学年中考冲刺卷数学试题含解析,共17页。试卷主要包含了4的平方根是,一、单选题,计算的结果是等内容,欢迎下载使用。
2021-2022学年安徽池州市东至县市级名校中考联考数学试题含解析: 这是一份2021-2022学年安徽池州市东至县市级名校中考联考数学试题含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是等内容,欢迎下载使用。
2021-2022学年广东省潮州市市级名校中考联考数学试题含解析: 这是一份2021-2022学年广东省潮州市市级名校中考联考数学试题含解析,共27页。试卷主要包含了下列说法正确的是,如图,点A,B在双曲线y=等内容,欢迎下载使用。