


2021-2022学年河北省唐山市迁安市中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下面的图形是轴对称图形,又是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
2.下列各式中,不是多项式2x2﹣4x+2的因式的是( )
A.2 B.2(x﹣1) C.(x﹣1)2 D.2(x﹣2)
3.若,代数式的值是
A.0 B. C.2 D.
4.小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:
①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.
你认为其中正确信息的个数有
A.2个 B.3个 C.4个 D.5个
5.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是( )
A. B. C. D.
6.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是( )
A.56 B.58 C.63 D.72
7.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作弧AC、弧CB、弧BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形.设点I为对称轴的交点,如图2,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是( )
A.18π B.27π C.π D.45π
8.一元二次方程的根的情况是( )
A.有一个实数根 B.有两个相等的实数根
C.有两个不相等的实数根 D.没有实数根
9.若关于x的分式方程的解为正数,则满足条件的正整数m的值为( )
A.1,2,3 B.1,2 C.1,3 D.2,3
10.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于( )
A. B. C. D.
11.已知方程的两个解分别为、,则的值为()
A. B. C.7 D.3
12.下列因式分解正确的是( )
A.x2+9=(x+3)2 B.a2+2a+4=(a+2)2
C.a3-4a2=a2(a-4) D.1-4x2=(1+4x)(1-4x)
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由 个组成的,依此,第n个图案是由 个组成的.
14.关于的一元二次方程有两个相等的实数根,则的值等于_____.
15.比较大小:4 (填入“>”或“<”号)
16.如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是_____cm.
17.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.
18.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2=_____°.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).
(1)求点B,C的坐标;
(2)判断△CDB的形状并说明理由;
(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.
20.(6分)如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE=BC.如果AC=6,求AE的长;设,,求向量(用向量、表示).
21.(6分)解方程式:- 3 =
22.(8分)已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;直接写出点A1的坐标,点A2的坐标.
23.(8分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:
时间(分钟)
里程数(公里)
车费(元)
小明
8
8
12
小刚
12
10
16
(1)求x,y的值;
(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?
24.(10分)(1)计算:sin45°
(2)解不等式组:
25.(10分)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=1.
(1)求证:PC是⊙O的切线.
(2)求tan∠CAB的值.
26.(12分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.
扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图;经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.
27.(12分)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.试判断DE与⊙O的位置关系,并说明理由;过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
根据轴对称图形和中心对称图形的定义对各个图形进行逐一分析即可.
【详解】
解:第一个图形是轴对称图形,但不是中心对称图形;
第二个图形是中心对称图形,但不是轴对称图形;
第三个图形既是轴对称图形,又是中心对称图形;
第四个图形即是轴对称图形,又是中心对称图形;
∴既是轴对称图形,又是中心对称图形的有两个,
故选:B.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.
2、D
【解析】
原式分解因式,判断即可.
【详解】
原式=2(x2﹣2x+1)=2(x﹣1)2。
故选:D.
【点睛】
考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
3、D
【解析】
由可得,整体代入到原式即可得出答案.
【详解】
解:,
,
则原式.
故选:D.
【点睛】
本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和法则及代数式的求值是解题的关键.
4、D
【解析】
试题分析:①如图,∵抛物线开口方向向下,∴a<1.
∵对称轴x,∴<1.∴ab>1.故①正确.
②如图,当x=1时,y<1,即a+b+c<1.故②正确.
③如图,当x=﹣1时,y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正确.
④如图,当x=﹣1时,y>1,即a﹣b+c>1,
∵抛物线与y轴交于正半轴,∴c>1.
∵b<1,∴c﹣b>1.
∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正确.
⑤如图,对称轴,则.故⑤正确.
综上所述,正确的结论是①②③④⑤,共5个.故选D.
5、D
【解析】
两个同心圆被均分成八等份,飞镖落在每一个区域的机会是均等的,由此计算出黑色区域的面积,利用几何概率的计算方法解答即可.
【详解】
因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,
所以P(飞镖落在黑色区域)==.
故答案选:D.
【点睛】
本题考查了几何概率,解题的关键是熟练的掌握几何概率的相关知识点.
6、B
【解析】
试题分析:第一个图形的小圆数量=1×2+2=4;第二个图形的小圆数量=2×3+2=8;第三个图形的小圆数量=3×4+2=14;则第n个图形的小圆数量=n(n+1)+2个,则第七个图形的小圆数量=7×8+2=58个.
考点:规律题
7、B
【解析】
先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可.
【详解】
如图1中,
∵等边△DEF的边长为2π,等边△ABC的边长为3,
∴S矩形AGHF=2π×3=6π,
由题意知,AB⊥DE,AG⊥AF,
∴∠BAG=120°,
∴S扇形BAG==3π,
∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;
故选B.
【点睛】
本题考查轨迹,弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解题的关键是判断出莱洛三角形绕等边△DEF扫过的图形.
8、D
【解析】
试题分析:△=22-4×4=-12<0,故没有实数根;
故选D.
考点:根的判别式.
9、C
【解析】
试题分析:解分式方程得:等式的两边都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,且x=4﹣m≠2,
已知关于x的分式方的解为正数,得m=1,m=3,故选C.
考点:分式方程的解.
10、A
【解析】
首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.
【详解】
设此多边形为n边形,
根据题意得:180(n-2)=1080,
解得:n=8,
∴这个正多边形的每一个外角等于:360°÷8=45°.
故选A.
【点睛】
此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.
11、D
【解析】
由根与系数的关系得出x1+x2=5,x1•x2=2,将其代入x1+x2−x1•x2中即可得出结论.
【详解】
解:∵方程x2−5x+2=0的两个解分别为x1,x2,
∴x1+x2=5,x1•x2=2,
∴x1+x2−x1•x2=5−2=1.
故选D.
【点睛】
本题考查了根与系数的关系,解题的关键是根据根与系数的关系得出x1+x2=5,x1•x2=2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之和与两根之积是关键.
12、C
【解析】
试题分析:A、B无法进行因式分解;C正确;D、原式=(1+2x)(1-2x)
故选C,考点:因式分解
【详解】
请在此输入详解!
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、16,3n+1.
【解析】
观察不难发现,后一个图案比前一个图案多3个基础图形,然后写出第5个和第n个图案的基础图形的个数即可.
【详解】
由图可得,第1个图案基础图形的个数为4,
第2个图案基础图形的个数为7,7=4+3,
第3个图案基础图形的个数为10,10=4+3×2,
…,
第5个图案基础图形的个数为4+3(5−1)=16,
第n个图案基础图形的个数为4+3(n−1)=3n+1.
故答案为16,3n+1.
【点睛】
本题考查了规律型:图形的变化类,根据图像发现规律是解题的关键.
14、
【解析】
分析:先根据根的判别式得到a-1=,把原式变形为,然后代入即可得出结果.
详解:由题意得:△= ,∴ ,∴,即a(a-1)=1, ∴a-1=,
故答案为-3.
点睛:本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac:当△>0, 方程有两个不相等的实数根;当△<0, 方程没有实数根;当△=0,方程有两个,相等的实数根,也考查了一元二次方程的定义.
15、>
【解析】
试题解析:∵<
∴4<.
考点:实数的大小比较.
【详解】
请在此输入详解!
16、
【解析】
设圆锥的底面圆的半径为r,由于∠AOB=90°得到AB为圆形纸片的直径,则OB=cm,根据弧长公式计算出扇形OAB的弧AB的长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长进行计算.
【详解】
解:设圆锥的底面圆的半径为r,
连结AB,如图,
∵扇形OAB的圆心角为90°,
∴∠AOB=90°,
∴AB为圆形纸片的直径,
∴AB=4cm,
∴OB=cm,
∴扇形OAB的弧AB的长=π,
∴2πr=π,
∴r=(cm).
故答案为.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理和弧长公式.
17、
【解析】
先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.
【详解】
由根与系数的关系得:m+n=,mn=,
∴m2+n2=(m+n)2-2mn=()2-2×=,
故答案为:.
【点睛】
本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.
18、40
【解析】
如图,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°,
故答案为:40.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (Ⅰ)B(3,0);C(0,3);(Ⅱ)为直角三角形;(Ⅲ).
【解析】
(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B,C的坐标.
(2)分别求出△CDB三边的长度,利用勾股定理的逆定理判定△CDB为直角三角形.
(3)△COB沿x轴向右平移过程中,分两个阶段:
①当0<t≤时,如答图2所示,此时重叠部分为一个四边形;
②当<t<3时,如答图3所示,此时重叠部分为一个三角形.
【详解】
解:(Ⅰ)∵点在抛物线上,
∴,得
∴抛物线解析式为:,
令,得,∴;
令,得或,∴.
(Ⅱ)为直角三角形.理由如下:
由抛物线解析式,得顶点的坐标为.
如答图1所示,过点作轴于点M,
则,,.
过点作于点,则,.
在中,由勾股定理得:;
在中,由勾股定理得:;
在中,由勾股定理得:.
∵,
∴为直角三角形.
(Ⅲ)设直线的解析式为,
∵,
∴,
解得,
∴,
直线是直线向右平移个单位得到,
∴直线的解析式为:;
设直线的解析式为,
∵,
∴,解得:,
∴.
连续并延长,射线交交于,则.
在向右平移的过程中:
(1)当时,如答图2所示:
设与交于点,可得,.
设与的交点为,则:.
解得,
∴.
.
(2)当时,如答图3所示:
设分别与交于点、点.
∵,
∴,.
直线解析式为,令,得,
∴.
.
综上所述,与的函数关系式为:.
20、(1)1;(2).
【解析】
(1)由平行线截线段成比例求得AE的长度;
(2)利用平面向量的三角形法则解答.
【详解】
(1)如图,
∵DE∥BC,且DE=BC,
∴.
又AC=6,
∴AE=1.
(2)∵,,
∴.
又DE∥BC,DE=BC,
∴
【点睛】
考查了平面向量,需要掌握平面向量的三角形法则和平行向量的定义.
21、x=3
【解析】
先去分母,再解方程,然后验根.
【详解】
解:去分母,得1-3(x-2)=1-x,1-3x+6=1-x,x=3,经检验,x=3是原方程的根.
【点睛】
此题重点考察学生对分式方程解的应用,掌握分式方程的解法是解题的关键.
22、 (1)见解析;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).
【解析】
(1)直接利用位似图形的性质得出对应点位置进而得出答案;
(2)利用(1)中所画图形进而得出答案.
【详解】
(1)如图所示:△OA1B1,△OA2B2,即为所求;
(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).
【点睛】
此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.
23、(1)x=1,y=;(2)小华的打车总费用为18元.
【解析】
试题分析:(1)根据表格内容列出关于x、y的方程组,并解方程组.
(2)根据里程数和时间来计算总费用.
试题解析:
(1)由题意得,
解得;
(2)小华的里程数是11km,时间为14min.
则总费用是:11x+14y=11+7=18(元).
答:总费用是18元.
24、(1);(2)﹣2<x≤1.
【解析】
(1)根据绝对值、特殊角的三角函数值可以解答本题;
(2)根据解一元一次不等式组的方法可以解答本题.
【详解】
(1)sin45°
=3-+×-5+×
=3-+3-5+1
=7--5;
(2)(2)
由不等式①,得
x>-2,
由不等式②,得
x≤1,
故原不等式组的解集是-2<x≤1.
【点睛】
本题考查解一元一次不等式组、实数的运算、特殊角的三角函数值,解答本题的关键是明确解它们各自的解答方法.
25、(1)见解析;(2).
【解析】
(1)连接OC、BC,根据题意可得OC2+PC2=OP2,即可证得OC⊥PC,由此可得出结论.
(2)先根据题意证明出△PBC∽△PCA,再根据相似三角形的性质得出边的比值,由此可得出结论.
【详解】
(1)如图,连接OC、BC
∵⊙O的半径为3,PB=2
∴OC=OB=3,OP=OB+PB=5
∵PC=1
∴OC2+PC2=OP2
∴△OCP是直角三角形,
∴OC⊥PC
∴PC是⊙O的切线.
(2)∵AB是直径
∴∠ACB=90°
∴∠ACO+∠OCB=90°
∵OC⊥PC
∴∠BCP+∠OCB=90°
∴∠BCP=∠ACO
∵OA=OC
∴∠A=∠ACO
∴∠A=∠BCP
在△PBC和△PCA中:
∠BCP=∠A,∠P=∠P
∴△PBC∽△PCA,
∴
∴tan∠CAB=
【点睛】
本题考查了切线与相似三角形的判定与性质,解题的关键是熟练的掌握切线的判定与相似三角形的判定与性质.
26、【解析】
试题分析:(1)求出总的作文篇数,即可得出九年级参赛作文篇数对应的圆心角的度数,求出八年级的作文篇数,补全条形统计图即可;
(2)设四篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文,用画树状法即可求得结果.
试题解析:(1)20÷20%=100,
九年级参赛作文篇数对应的圆心角=360°×=126°;
100﹣20﹣35=45,
补全条形统计图如图所示:
(2)假设4篇荣获特等奖的作文分别为A、B、C、D,
其中A代表七年级获奖的特等奖作文.
画树状图法:
共有12种可能的结果,七年级特等奖作文被选登在校刊上的结果有6种,
∴P(七年级特等奖作文被选登在校刊上)= .
考点:1.条形统计图;2.扇形统计图;3.列表法与画树状图法.
27、(1)DE与⊙O相切,理由见解析;(2)阴影部分的面积为2π﹣.
【解析】
(1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;
(2)利用勾股定理结合扇形面积求法分别分析得出答案.
【详解】
(1)DE与⊙O相切,
理由:连接DO,
∵DO=BO,
∴∠ODB=∠OBD,
∵∠ABC的平分线交⊙O于点D,
∴∠EBD=∠DBO,
∴∠EBD=∠BDO,
∴DO∥BE,
∵DE⊥BC,
∴∠DEB=∠EDO=90°,
∴DE与⊙O相切;
(2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,
∴DE=DF=3,
∵BE=3,
∴BD==6,
∵sin∠DBF=,
∴∠DBA=30°,
∴∠DOF=60°,
∴sin60°=,
∴DO=2,
则FO=,
故图中阴影部分的面积为:.
【点睛】
此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键.
2023-2024学年河北省唐山市迁安市九年级(上)期末数学试卷(含解析): 这是一份2023-2024学年河北省唐山市迁安市九年级(上)期末数学试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年河北省唐山市迁安市八年级(下)期中数学试卷(含解析): 这是一份2022-2023学年河北省唐山市迁安市八年级(下)期中数学试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河北省唐山市迁安市2021-2022学年七年级(下)期末数学试卷(含解析): 这是一份河北省唐山市迁安市2021-2022学年七年级(下)期末数学试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。