2022年四川省眉山市中考数学试卷解析版
展开2022年四川省眉山市中考数学试卷
一、选择题:本大题共12个小题,每小题4分,共48分.在每个小题给出的四个选项中,只有一项是正确的,请把答题卡上相应题目的正确选项涂黑.
1.(4分)实数﹣2,0,,2中,为负数的是( )
A.﹣2 B.0 C. D.2
2.(4分)截至2021年12月31日,全国共有共青团组织约367.7万个.将367.7万用科学记数法表示为( )
A.3.677×102 B.3.677×105 C.3.677×106 D.0.3677×107
3.(4分)下列英文字母为轴对称图形的是( )
A.W B.L C.S D.Q
4.(4分)下列运算中,正确的是( )
A.x3•x5=x15
B.2x+3y=5xy
C.(x﹣2)2=x2﹣4
D.2x2•(3x2﹣5y)=6x4﹣10x2y
5.(4分)下列立体图形中,俯视图是三角形的是( )
A. B. C. D.
6.(4分)中考体育测试,某组10名男生引体向上个数分别为:6,8,8,7,7,8,9,7,8,9.则这组数据的中位数和众数分别是( )
A.7.5,7 B.7.5,8 C.8,7 D.8,8
7.(4分)在△ABC中,AB=4,BC=6,AC=8,点D,E,F分别为边AB,AC,BC的中点,则△DEF的周长为( )
A.9 B.12 C.14 D.16
8.(4分)化简+a﹣2的结果是( )
A.1 B. C. D.
9.(4分)我国古代数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊三,直金十二两.问牛、羊各直金几何?”题目大意是:5头牛、2只羊共19两银子;2头牛、3只羊共12两银子,每头牛、每只羊各多少两银子?设1头牛x两银子,1只羊y两银子,则可列方程组为( )
A. B.
C. D.
10.(4分)如图是不倒翁的主视图,不倒翁的圆形脸恰好与帽子边沿PA,PB分别相切于点A,B,不倒翁的鼻尖正好是圆心O,若∠OAB=28°,则∠APB的度数为( )
A.28° B.50° C.56° D.62°
11.(4分)一次函数y=(2m﹣1)x+2的值随x的增大而增大,则点P(﹣m,m)所在象限为( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
12.(4分)如图,四边形ABCD为正方形,将△EDC绕点C逆时针旋转90°至△HBC,点D,B,H在同一直线上,HE与AB交于点G,延长HE与CD的延长线交于点F,HB=2,HG=3.以下结论:①∠EDC=135°;②EC2=CD•CF;③HG=EF;④sin∠CED=.其中正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
二、填空题:本大题共6个小题,每小题4分,共24分.请将正确答案直接填写在答题卡相应的位置上.
13.(4分)分解因式:2x2﹣8x= .
14.(4分)如图,已知a∥b,∠1=110°,则∠2的度数为 .
15.(4分)一个多边形外角和是内角和的,则这个多边形的边数为 .
16.(4分)设x1,x2是方程x2+2x﹣3=0的两个实数根,则x12+x22的值为 .
17.(4分)将一组数,2,,2,…,4,按下列方式进行排列:,2,,2;,2,,4;
…若2的位置记为(1,2),的位置记为(2,3),则2的位置记为 .
18.(4分)如图,点P为矩形ABCD的对角线AC上一动点,点E为BC的中点,连接PE,PB,若AB=4,BC=4,则PE+PB的最小值为 .
三、解答题:本大题共8个小题,共78分,请把解答过程写在答题卡相应的位置上.
19.(8分)计算:(3﹣π)0﹣|﹣|++2﹣2.
20.(8分)解方程:=.
21.(10分)北京冬奥组委会对志愿者开展培训活动,为了解某批次培训活动效果,随机抽取了20名志愿者的测试成绩.成绩如下:
84 93 91 87 94 86 97 100 88 94 92 91 82 89 87 92 98 92 93 88
整理上面的数据,得到频数分布表和扇形统计图:
等级 | 成绩/分 | 频数 |
A | 95≤x≤100 | 3 |
B | 90≤x<95 | 9 |
C | 85≤x<90 | ▲ |
D | 80≤x<85 | 2 |
请根据以上信息,解答下列问题:
(1)C等级的频数为 ,B所对应的扇形圆心角度数为 ;
(2)该批志愿者有1500名,若成绩不低于90分为优秀,请估计这批志愿者中成绩达到优秀等级的人数;
(3)已知A等级中有2名男志愿者,现从A等级中随机抽取2名志愿者,试用列表或画树状图的方法求出恰好抽到一男一女的概率.
22.(10分)数学实践活动小组去测量眉山市某标志性建筑物的高CD.如图,在楼前平地A处测得楼顶C处的仰角为30°,沿AD方向前进60 m到达B处,测得楼顶C处的仰角为45°,求此建筑物的高.(结果保留整数.参考数据:≈1.41,≈1.73)
23.(10分)已知直线y=x与反比例函数y=的图象在第一象限交于点M(2,a).
(1)求反比例函数的解析式;
(2)如图,将直线y=x向上平移b个单位后与y=的图象交于点A(1,m)和点B(n,﹣1),求b的值;
(3)在(2)的条件下,设直线AB与x轴、y轴分别交于点C,D,求证:△AOD≌△BOC.
24.(10分)建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.
(1)求该市改造老旧小区投入资金的年平均增长率;
(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?
25.(10分)如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O相切于点C,过点B作BD⊥DC,连接AC,BC.
(1)求证:BC是∠ABD的角平分线;
(2)若BD=3,AB=4,求BC的长;
(3)在(2)的条件下,求阴影部分的面积.
26.(12分)在平面直角坐标系中,抛物线y=﹣x2﹣4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为(﹣5,0).
(1)求点C的坐标;
(2)如图1,若点P是第二象限内抛物线上一动点,求点P到直线AC距离的最大值;
(3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
2022年四川省眉山市中考数学试卷
参考答案与试题解析
一、选择题:本大题共12个小题,每小题4分,共48分.在每个小题给出的四个选项中,只有一项是正确的,请把答题卡上相应题目的正确选项涂黑.
1.(4分)实数﹣2,0,,2中,为负数的是( )
A.﹣2 B.0 C. D.2
【解答】解:∵﹣2<0
∴负数是:﹣2,
故选A.
2.(4分)截至2021年12月31日,全国共有共青团组织约367.7万个.将367.7万用科学记数法表示为( )
A.3.677×102 B.3.677×105 C.3.677×106 D.0.3677×107
【解答】解:367.7万=3677000=3.677×106;
故选:C.
3.(4分)下列英文字母为轴对称图形的是( )
A.W B.L C.S D.Q
【解答】解:A、W是轴对称图形,符合题意;
B、L不是轴对称图形,不合题意;
C、S不是轴对称图形,不合题意;
D、Q不是轴对称图形,不合题意.
故选:A.
4.(4分)下列运算中,正确的是( )
A.x3•x5=x15
B.2x+3y=5xy
C.(x﹣2)2=x2﹣4
D.2x2•(3x2﹣5y)=6x4﹣10x2y
【解答】解:A.x3•x5=x15,根据同底数幂的乘法法则可知:x3•x5=x8,故选项计算错误,不符合题意;
B.2x+3y=5xy,2x和3y不是同类项,不能合并,故选项计算错误,不符合题意;
C.(x﹣2)2=x2﹣4,根据完全平方公式可得:(x﹣2)2=x2+4x﹣4,故选项计算错误,不符合题意;
D.2x2•(3x2﹣5y)=6x4﹣10x2y,根据单项式乘多项式的法则可知选项计算正确,符合题意;
故选:D.
5.(4分)下列立体图形中,俯视图是三角形的是( )
A. B. C. D.
【解答】解:A、圆锥体的俯视图是圆,故此选项不合题意;
B、三棱柱的俯视图是三角形,故此选项符合题意;
C、球的俯视图是圆,故此选项不合题意;
D、圆柱体的俯视图是圆,故此选项不合题意;
故选:B.
6.(4分)中考体育测试,某组10名男生引体向上个数分别为:6,8,8,7,7,8,9,7,8,9.则这组数据的中位数和众数分别是( )
A.7.5,7 B.7.5,8 C.8,7 D.8,8
【解答】解:根据题意,
这组数据按从小到大排列为:6,7,7,7,8,8,8,8,9,9;
∴中位数为:8;众数为8;
故选:D.
7.(4分)在△ABC中,AB=4,BC=6,AC=8,点D,E,F分别为边AB,AC,BC的中点,则△DEF的周长为( )
A.9 B.12 C.14 D.16
【解答】解:如图,点E,F分别为各边的中点,
∴DE、EF、DF是△ABC的中位线,
∴DE=BC=3,EF=AB=2,DF=AC=4,
∴△DEF的周长=3+2+4=9.
故选:A.
8.(4分)化简+a﹣2的结果是( )
A.1 B. C. D.
【解答】解:
=
=.
故选:B.
9.(4分)我国古代数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊三,直金十二两.问牛、羊各直金几何?”题目大意是:5头牛、2只羊共19两银子;2头牛、3只羊共12两银子,每头牛、每只羊各多少两银子?设1头牛x两银子,1只羊y两银子,则可列方程组为( )
A. B.
C. D.
【解答】解:∵5头牛,2只羊共19两银子,
∴5x+2y=19;
∵2头牛,3只羊共12两银子,
∴2x+3y=12.
∴可列方程组为.
故选:A.
10.(4分)如图是不倒翁的主视图,不倒翁的圆形脸恰好与帽子边沿PA,PB分别相切于点A,B,不倒翁的鼻尖正好是圆心O,若∠OAB=28°,则∠APB的度数为( )
A.28° B.50° C.56° D.62°
【解答】解:连接OB,
∵OA=OB,
∴∠OAB=∠OBA=28°,
∴∠AOB=124°,
∵PA、PB切⊙O于A、B,
∴OA⊥PA,OP⊥AB,
∴∠OAP+∠OBP=180°,
∴∠APB+∠AOB=180°;
∴∠APB=56°.
故选:C.
11.(4分)一次函数y=(2m﹣1)x+2的值随x的增大而增大,则点P(﹣m,m)所在象限为( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【解答】解:∵一次函数y=(2m﹣1)x+2的值随x的增大而增大,
∴2m﹣1>0,
解得:m>,
∴P(﹣m,m)在第二象限,
故选:B.
12.(4分)如图,四边形ABCD为正方形,将△EDC绕点C逆时针旋转90°至△HBC,点D,B,H在同一直线上,HE与AB交于点G,延长HE与CD的延长线交于点F,HB=2,HG=3.以下结论:①∠EDC=135°;②EC2=CD•CF;③HG=EF;④sin∠CED=.其中正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
【解答】解:∵△EDC旋转得到△HBC,
∴∠EDC=∠HBC,
∵ABCD为正方形,D,B,H在同一直线上,
∴∠HBC=180°﹣45°=135°,
∴∠EDC=135°,故①正确;
∵△EDC旋转得到△HBC,
∴EC=HC,∠ECH=90°,
∴∠HEC=45°,
∴∠FEC=180°﹣45°=135°,
∵∠ECD=∠ECF,
∴△EFC∽△DEC,
∴,
∴EC2=CD•CF,故②正确;
设正方形边长为a,
∵∠GHB+∠BHC=45°,∠GHB+∠HGB=45°,
∴∠BHC=∠HGB=∠DEC,
∵∠GBH=∠EDC=135°,
∴△GBH∽△EDC,
∴,即,
∵△HEC是等腰直角三角形,
∴,
∵∠GHB=∠FHD,∠GBH=∠HDF=135°,
∴△HBG∽△HDF,
∴,即,解得:EF=3,
∵HG=3,
∴HG=EF,故③正确;
过点E作EM⊥FD交FD于点M,
∴∠EDM=45°,
∵ED=HB=2,
∴,
∵EF=3,
∴,
∵∠DEC+∠DCE=45°,∠EFC+∠DCE=45°,
∴∠DEC=∠EFC,
∴,故④正确
综上所述:正确结论有4个,
故选:D.
二、填空题:本大题共6个小题,每小题4分,共24分.请将正确答案直接填写在答题卡相应的位置上.
13.(4分)分解因式:2x2﹣8x= 2x(x﹣4) .
【解答】解:原式=2x(x﹣4).
故答案为:2x(x﹣4).
14.(4分)如图,已知a∥b,∠1=110°,则∠2的度数为 110° .
【解答】解:如下图,
∵a∥b,∠1=110°,
∴∠3=∠1=110°,
∵∠3与∠2为对顶角,
∴∠2=∠3=110°.
故答案为:110°.
15.(4分)一个多边形外角和是内角和的,则这个多边形的边数为 11 .
【解答】解:根据题意可得:,
解得:n=11,
故答案为:11.
16.(4分)设x1,x2是方程x2+2x﹣3=0的两个实数根,则x12+x22的值为 10 .
【解答】解:∵x1,x2是方程x2+2x﹣3=0的两个实数根,
∴x1+x2=﹣2,x1•x2=﹣3,
∴x12+x22=(x1+x2)2﹣2x1x2=(﹣2)2﹣2×(﹣3)=10;
故答案为:10.
17.(4分)将一组数,2,,2,…,4,按下列方式进行排列:,2,,2;,2,,4;
…若2的位置记为(1,2),的位置记为(2,3),则2的位置记为 (4,2) .
【解答】解:题中数字可以化成:,,,;,,,;
∴规律为:被开数为从2开始的偶数,每一行4个数,
∵,28是第14个偶数,而14÷4=3⋯2,
∴的位置记为(4,2),
故答案为:(4,2).
18.(4分)如图,点P为矩形ABCD的对角线AC上一动点,点E为BC的中点,连接PE,PB,若AB=4,BC=4,则PE+PB的最小值为 6 .
【解答】解:如图,作点B关于AC的对称点B',交AC于点F,连接B′E交AC于点P,则PE+PB的最小值为B′E的长度,
∵四边形ABCD为矩形,
∴AB=CD=4,∠ABC=90°,
在Rt△ABC中,AB=4,BC=4,
∴tan∠ACB==,
∴∠ACB=30°,
由对称的性质可知,B'B=2BF,B'B⊥AC,
∴BF=BC=2,∠CBF=60°,
∴B′B=2BF=4,
∵BE=BF,∠CBF=60°,
∴△BEF是等边三角形,
∴BE=BF=B'F,
∴△BEB'是直角三角形,
∴B′E===6,
∴PE+PB的最小值为6,
故答案为:6.
三、解答题:本大题共8个小题,共78分,请把解答过程写在答题卡相应的位置上.
19.(8分)计算:(3﹣π)0﹣|﹣|++2﹣2.
【解答】解:(3﹣π)0﹣|﹣|++2﹣2
=
=7.
20.(8分)解方程:=.
【解答】解:=,
方程两边同乘(x﹣1)(2x+1)得:
2x+1=3(x﹣1),
解这个整式方程得:
x=4,
检验:当x=4时,(x﹣1)(2x+1)≠0,
∴x=4是原方程的解.
21.(10分)北京冬奥组委会对志愿者开展培训活动,为了解某批次培训活动效果,随机抽取了20名志愿者的测试成绩.成绩如下:
84 93 91 87 94 86 97 100 88 94 92 91 82 89 87 92 98 92 93 88
整理上面的数据,得到频数分布表和扇形统计图:
等级 | 成绩/分 | 频数 |
A | 95≤x≤100 | 3 |
B | 90≤x<95 | 9 |
C | 85≤x<90 | ▲ |
D | 80≤x<85 | 2 |
请根据以上信息,解答下列问题:
(1)C等级的频数为 6 ,B所对应的扇形圆心角度数为 162° ;
(2)该批志愿者有1500名,若成绩不低于90分为优秀,请估计这批志愿者中成绩达到优秀等级的人数;
(3)已知A等级中有2名男志愿者,现从A等级中随机抽取2名志愿者,试用列表或画树状图的方法求出恰好抽到一男一女的概率.
【解答】解:(1)等级C的频数=20﹣3﹣9﹣2=6,
B所占的百分比为:9÷20×100%=45%,
∴B所对应的扇形圆心角度数为:360×45%=162°.
故答案是:6,162°;
(2)随机抽取的20名志愿者的测试成绩中大于等于9(0分)的人数共有12人,其占样本人数的百分比为:12÷20×100%=60%,
∴1500名志愿者中成绩达到优秀等级的人数有:1500×60%=900人.
(3)列出树状图如下所示:
共有6种等可能的结果,恰好抽到一男一女的结果有4种,
∴恰好抽到一男一女的概率P(一男一女)=.
22.(10分)数学实践活动小组去测量眉山市某标志性建筑物的高CD.如图,在楼前平地A处测得楼顶C处的仰角为30°,沿AD方向前进60 m到达B处,测得楼顶C处的仰角为45°,求此建筑物的高.(结果保留整数.参考数据:≈1.41,≈1.73)
【解答】解:在Rt△BCD中,∠CBD=45°,
设CD为xm,
∴BD=CD=xm,
∴AD=BD+AB=(60+x)m,
在Rt△ACD中,∠CAD=30°,
tan∠CAD=tan30°==,
解得≈82.
答:此建筑物的高度约为82 m.
23.(10分)已知直线y=x与反比例函数y=的图象在第一象限交于点M(2,a).
(1)求反比例函数的解析式;
(2)如图,将直线y=x向上平移b个单位后与y=的图象交于点A(1,m)和点B(n,﹣1),求b的值;
(3)在(2)的条件下,设直线AB与x轴、y轴分别交于点C,D,求证:△AOD≌△BOC.
【解答】(1)解:∵直线y=x过点M(2,a),
∴a=2,
∴将M(2,2)代入中,得k=4,
∴反比例函数的解析式为;
(2)解:由(1)知,反比例函数的解析式为,
∵点A(1,m)在的图象上,
∴m=4,
∴A(1,4),
由平移得,平移后直线AB的解析式为y=x+b,
将A(1,4)代入y=x+b中,得b=3;
(3)证明:如图,过点A作AE⊥y轴于点E,过B点作BF⊥x轴于点F.
由(1)知,反比例函数的解析式为,
∵点A(n,﹣1)在的图象上,
∴n=﹣4,
∴B(﹣4,﹣1),
∵A(1,4),
∴AE=BF,OE=OF,
∴∠AEO=∠BFO,
∴△AOE≌△BOF(SAS),
∴∠AOE=∠BOF,OA=OB,
由(2)知,b=3,
∴平移后直线AB的解析式为y=x+3,
又∵直线y=x+3与x轴、y轴分别交于点C,D,
∴C(﹣3,0),D(0,3),
∴OC=OD,
在△AOD和△BOC中,
,
∴△AOD≌△BOC(SAS).
24.(10分)建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.
(1)求该市改造老旧小区投入资金的年平均增长率;
(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?
【解答】解:(1)设该市改造老旧小区投入资金的年平均增长率为x,
依题意得:1000(1+x)2=1440,
解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
答:该市改造老旧小区投入资金的年平均增长率为20%.
(2)设该市在2022年可以改造y个老旧小区,
依题意得:80×(1+15%)y≤1440×(1+20%),
解得:y≤,
又∵y为整数,
∴y的最大值为18.
答:该市在2022年最多可以改造18个老旧小区.
25.(10分)如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O相切于点C,过点B作BD⊥DC,连接AC,BC.
(1)求证:BC是∠ABD的角平分线;
(2)若BD=3,AB=4,求BC的长;
(3)在(2)的条件下,求阴影部分的面积.
【解答】(1)证明:连接OC,如图1,
∵CD与⊙O相切于点C,OC为半径,
∴OC⊥CD,
∵BD⊥CD,
∴OC∥BD,
∴∠OCB=∠DBC,
∵OC=OB,
∴∠OCB=∠OBC,
∴∠DBC=∠OBC,
∴BC平分∠ABD;
(2)解:如图2,
∵BC平分∠ABD,
∴∠ABC=∠CBD,
∵AB是直径,
∴∠ACB=90°,
∵BD⊥DC,
∴∠D=90°,
∴∠ACB=∠D,
∴△ABC∽△CBD,
∴,
∴BC2=AB•BD,
∵BD=3,AB=4,
∴BC2=3×4=12,
∴或﹣2(不符合题意,舍去),
∴BC的长为2;
(3)解:如图3,作CE⊥AO于E,连接OC,
∵AB是直径,AB=4,
∴OA=OC=2,
在Rt△ABC中,AC===2,
∴AO=CO=AC=2,
∴△AOC是等边三角形,
∴∠AOC=60°,
∵CE⊥OA,
∵OE=OA=1,
∴,
∴阴影部分的面积为:.
26.(12分)在平面直角坐标系中,抛物线y=﹣x2﹣4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为(﹣5,0).
(1)求点C的坐标;
(2)如图1,若点P是第二象限内抛物线上一动点,求点P到直线AC距离的最大值;
(3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
【解答】解:(1)∵点A(﹣5,0)在抛物线y=﹣x2﹣4x+c的图象上,
∴0=﹣52﹣4×5+c
∴c=5,
∴点C的坐标为(0,5);
(2)过P作PE⊥AC于点E,过点P作PF⊥x轴交AC于点H,如图1:
∵A(﹣5,0),C(0,5)
∴OA=OC,
∴△AOC是等腰直角三角形,
∴∠CAO=45°,
∵PF⊥x轴,
∴∠AHF=45°=∠PHE,
∴△PHE是等腰直角三角形,
∴,
∴当PH最大时,PE最大,
设直线AC解析式为y=kx+5,
将A(﹣5,0)代入得0=5k+5,
∴k=1,
∴直线AC解析式为y=x+5,
设P(m,﹣m2﹣4m+5),(﹣5<m<0),则H(m,m+5),
∴,
∵a=﹣1<0,
∴当时,PH最大为,
∴此时PE最大为,即点P到直线AC的距离值最大;
(3)存在,理由如下:
∵y=﹣x2﹣4x+5=﹣(x+2)2+9,
∴抛物线的对称轴为直线x=﹣2,
设点N的坐标为(﹣2,m),点M的坐标为(x,﹣x2﹣4x+5),
分三种情况:①当AC为平行四边形对角线时,
,
解得,
∴点M的坐标为(﹣3,8);
②当AM为平行四边形对角线时,
,
解得,
∴点M的坐标为(3,﹣16);
③当AN为平行四边形对角线时,
,
解得,
∴点M的坐标为(﹣7,﹣16);
综上,点M的坐标为:(﹣3,8)或(3,﹣16)或(﹣7,﹣16).
2023年四川省眉山市中考数学试卷(含答案解析): 这是一份2023年四川省眉山市中考数学试卷(含答案解析),共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年四川省眉山市中考数学试卷(含解析): 这是一份2023年四川省眉山市中考数学试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年四川省眉山市中考数学试卷及答案解析: 这是一份2023年四川省眉山市中考数学试卷及答案解析,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。