2021-2022学年北京市丰台区十八中学中考猜题数学试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.若代数式的值为零,则实数x的值为( )
A.x=0 B.x≠0 C.x=3 D.x≠3
2.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:
文化程度
高中
大专
本科
硕士
博士
人数
9
17
20
9
5
关于这组文化程度的人数数据,以下说法正确的是:( )
A.众数是20 B.中位数是17 C.平均数是12 D.方差是26
3.某学校举行一场知识竞赛活动,竞赛共有4小题,每小题5分,答对给5分,答错或不答给0分,在该学校随机抽取若干同学参加比赛,成绩被制成不完整的统计表如下.
成绩
人数(频数)
百分比(频率)
0
5
0.2
10
5
15
0.4
20
5
0.1
根据表中已有的信息,下列结论正确的是( )
A.共有40名同学参加知识竞赛
B.抽到的同学参加知识竞赛的平均成绩为10分
C.已知该校共有800名学生,若都参加竞赛,得0分的估计有100人
D.抽到同学参加知识竞赛成绩的中位数为15分
4.(﹣1)0+|﹣1|=( )
A.2 B.1 C.0 D.﹣1
5.某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件个,依题意列方程为( )
A. B.
C. D.
6.的相反数是( )
A. B.- C. D.
7.的算术平方根是( )
A.9 B.±9 C.±3 D.3
8.如图,将一副三角板如此摆放,使得BO和CD平行,则∠AOD的度数为( )
A.10° B.15° C.20° D.25°
9.如图,二次函数y=ax1+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=1,且OA=OC.则下列结论:①abc>0;②9a+3b+c>0;③c>﹣1;④关于x的方程ax1+bx+c=0(a≠0)有一个根为﹣;⑤抛物线上有两点P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,则y1>y1.其中正确的结论有( )
A.1个 B.3个 C.4个 D.5个
10.二次函数y=ax2+c的图象如图所示,正比例函数y=ax与反比例函数y=在同一坐标系中的图象可能是( )
A. B. C. D.
11.函数y=中,自变量x的取值范围是( )
A.x>3 B.x<3 C.x=3 D.x≠3
12.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )
A.15 B.17 C.19 D.24
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是( )
A.﹣1 B.0 C.1 D.2
14.已知关于x的方程有解,则k的取值范围是_____.
15.已知矩形ABCD,AD>AB,以矩形ABCD的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD的其他边上,则可以画出的不同的等腰三角形的个数为_______________.
16.的相反数是______,的倒数是______.
17.如图,在Rt△ABC中,AC=4,BC=3,将Rt△ABC以点A为中心,逆时针旋转60°得到△ADE,则线段BE的长度为_____.
18.将数轴按如图所示从某一点开始折出一个等边三角形ABC,设点A表示的数为x﹣3,点B表示的数为2x+1,点C表示的数为﹣4,若将△ABC向右滚动,则x的值等于_____,数字2012对应的点将与△ABC的顶点_____重合.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图1,已知直线l:y=﹣x+2与y轴交于点A,抛物线y=(x﹣1)2+m也经过点A,其顶点为B,将该抛物线沿直线l平移使顶点B落在直线l的点D处,点D的横坐标n(n>1).
(1)求点B的坐标;
(2)平移后的抛物线可以表示为 (用含n的式子表示);
(3)若平移后的抛物线与原抛物线相交于点C,且点C的横坐标为a.
①请写出a与n的函数关系式.
②如图2,连接AC,CD,若∠ACD=90°,求a的值.
20.(6分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.
(1)求双曲线的解析式;
(2)求点C的坐标,并直接写出y1<y2时x的取值范围.
21.(6分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)
(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;
(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;
(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.
22.(8分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:
分 组
频数
频率
第一组(0≤x<15)
3
0.15
第二组(15≤x<30)
6
a
第三组(30≤x<45)
7
0.35
第四组(45≤x<60)
b
0.20
(1)频数分布表中a=_____,b=_____,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?
23.(8分)如图,某游乐园有一个滑梯高度AB,高度AC为3米,倾斜角度为58°.为了改善滑梯AB的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)
24.(10分)十八大报告首次提出建设生态文明,建设美丽中国.十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键.截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:
表1全国森林面积和森林覆盖率
清查次数
一
(1976年)
二
(1981年)
三
(1988年)
四
(1993年)
五
(1998年)
六
(2003年)
七
(2008年)
八
(2013年)
森林面积(万公顷)
12200
1150
12500
13400
15894. 09
17490.92
19545.22
20768.73
森林覆盖率
12.7%
12%
12.98%
13.92%
16.55%
18.21%
20.36%
21.63%
表2北京森林面积和森林覆盖率
清查次数
一
(1976年)
二
(1981年)
三
(1988年)
四
(1993年)
五
(1998年)
六
(2003年)
七
(2008年)
八
(2013年)
森林面积(万公顷)
33.74
37.88
52.05
58.81
森林覆盖率
11.2%
8.1%
12.08%
14.99%
18.93%
21.26%
31.72%
35.84%
(以上数据来源于中国林业网)
请根据以上信息解答下列问题:
(1)从第 次清查开始,北京的森林覆盖率超过全国的森林覆盖率;
(2)补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;
(3)第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到 万公顷(用含a和b的式子表示).
25.(10分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.
26.(12分)发现
如图1,在有一个“凹角∠A1A2A3”n边形A1A2A3A4……An中(n为大于3的整数),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.
验证如图2,在有一个“凹角∠ABC”的四边形ABCD中,证明:∠ABC=∠A+∠C+∠D.证明3,在有一个“凹角∠ABC”的六边形ABCDEF中,证明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.
延伸如图4,在有两个连续“凹角A1A2A3和∠A2A3A4”的四边形A1A2A3A4……An中(n为大于4的整数),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣ )×180°.
27.(12分)已知.化简;如果、是方程的两个根,求的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
根据分子为零,且分母不为零解答即可.
【详解】
解:∵代数式的值为零,
∴x=0,
此时分母x-3≠0,符合题意.
故选A.
【点睛】
本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.
2、C
【解析】
根据众数、中位数、平均数以及方差的概念求解.
【详解】
A、这组数据中9出现的次数最多,众数为9,故本选项错误;
B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;
C、平均数==12,故本选项正确;
D、方差= [(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]= ,故本选项错误.
故选C.
【点睛】
本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.
3、B
【解析】
根据频数÷频率=总数可求出参加人数,根据分别求出5分、15分、0分的人数,即可求出平均分,根据0分的频率即可求出800人中0分的人数,根据中位数的定义求出中位数,对选项进行判断即可.
【详解】
∵5÷0.1=50(名),有50名同学参加知识竞赛,故选项A错误;
∵成绩5分、15分、0分的同学分别有:50×0.2=10(名),50×0.4=20(名),50﹣10﹣5﹣20﹣5=10(名)
∴抽到的同学参加知识竞赛的平均成绩为:=10,故选项B正确;
∵0分同学10人,其频率为0.2,
∴800名学生,得0分的估计有800×0.2=160(人),故选项C错误;
∵第25、26名同学的成绩为10分、15分,
∴抽到同学参加知识竞赛成绩的中位数为12.5分,故选项D错误.
故选:B.
【点睛】
本题考查利用频率估算概率,平均数及中位数的定义,熟练掌握相关知识是解题关键.
4、A
【解析】
根据绝对值和数的0次幂的概念作答即可.
【详解】
原式=1+1=2
故答案为:A.
【点睛】
本题考查的知识点是绝对值和数的0次幂,解题关键是熟记数的0次幂为1.
5、A
【解析】
设原计划每天生产零件x个,则实际每天生产零件为1.5x个,根据提前5天完成任务,列方程即可.
【详解】
设原计划每天生产零件x个,则实际每天生产零件为1.5x个,
由题意得,
故选:A.
【点睛】
本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可.
6、C
【解析】
根据只有符号不同的两个数互为相反数进行解答即可.
【详解】
与只有符号不同,
所以的相反数是,
故选C.
【点睛】
本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.
7、D
【解析】
根据算术平方根的定义求解.
【详解】
∵=9,
又∵(±1)2=9,
∴9的平方根是±1,
∴9的算术平方根是1.
即的算术平方根是1.
故选:D.
【点睛】
考核知识点:算术平方根.理解定义是关键.
8、B
【解析】
根据题意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根据平行线的性质即可解答
【详解】
根据题意可知∠AOB=∠ABO=45°,∠DOC=30°
∵BO∥CD
∴∠BOC=∠DCO=90°
∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15°
故选B
【点睛】
此题考查三角形内角和,平行线的性质,解题关键在于利用平行线的性质得到角相等
9、D
【解析】
根据抛物线的图象与系数的关系即可求出答案.
【详解】
解:由抛物线的开口可知:a<0,由抛物线与y轴的交点可知:c<0,由抛物线的对称轴可知:>0,∴b>0,∴abc>0,故①正确;
令x=3,y>0,∴9a+3b+c>0,故②正确;
∵OA=OC<1,∴c>﹣1,故③正确;
∵对称轴为直线x=1,∴﹣=1,∴b=﹣4a.
∵OA=OC=﹣c,∴当x=﹣c时,y=0,∴ac1﹣bc+c=0,∴ac﹣b+1=0,∴ac+4a+1=0,∴c=,∴设关于x的方程ax1+bx+c=0(a≠0)有一个根为x,∴x﹣c=4,∴x=c+4=,故④正确;
∵x1<1<x1,∴P、Q两点分布在对称轴的两侧,
∵1﹣x1﹣(x1﹣1)=1﹣x1﹣x1+1=4﹣(x1+x1)<0,
即x1到对称轴的距离小于x1到对称轴的距离,∴y1>y1,故⑤正确.
故选D.
【点睛】
本题考查的是二次函数图象与系数的关系,二次函数y=ax1+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.本题属于中等题型.
10、C
【解析】
根据二次函数图像位置确定a0,c0,即可确定正比例函数和反比例函数图像位置.
【详解】
解:由二次函数的图像可知a0,c0,
∴正比例函数过二四象限,反比例函数过一三象限.
故选C.
【点睛】
本题考查了函数图像的性质,属于简单题,熟悉系数与函数图像的关系是解题关键.
11、D
【解析】
由题意得,x﹣1≠0,
解得x≠1.
故选D.
12、D
【解析】
由图可知:第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,第④个图案有三角形1+3+4+4=12,…第n个图案有三角形4(n﹣1)个(n>1时),由此得出规律解决问题.
【详解】
解:解:∵第①个图案有三角形1个,
第②图案有三角形1+3=4个,
第③个图案有三角形1+3+4=8个,
…
∴第n个图案有三角形4(n﹣1)个(n>1时),
则第⑦个图中三角形的个数是4×(7﹣1)=24个,
故选D.
【点睛】
本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出an=4(n﹣1)是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、D
【解析】
根据根的判别式得到关于a的方程,求解后可得到答案.
【详解】
关于x的方程有两个不相等的实数根,
则
解得:
满足条件的最小整数的值为2.
故选D.
【点睛】
本题考查了一元二次方程根与系数的关系,理解并能运用根的判别式得出方程是解题关键.
14、k≠1
【解析】
试题分析:因为,所以1-x+2(x-2)=-k,所以1-x+2x-4=-k,所以x=3-k,所以,因为原方程有解,所以,解得.
考点:分式方程.
15、8
【解析】
根据题意作出图形即可得出答案,
【详解】
如图,AD>AB,△CDE1,△ABE2,△ABE3,△BCE4,△CDE5,△ABE6,△ADE7,△CDE8,为等腰三角形,故有8个满足题意得点.
【点睛】
此题主要考查矩形的对称性,解题的关键是根据题意作出图形.
16、2,
【解析】
试题分析:根据相反数和倒数的定义分别进行求解,﹣2的相反数是2,
﹣2的倒数是.
考点:倒数;相反数.
17、
【解析】
连接CE,作EF⊥BC于F,根据旋转变换的性质得到∠CAE=60°,AC=AE,根据等边三角形的性质得到CE=AC=4,∠ACE=60°,根据直角三角形的性质、勾股定理计算即可.
【详解】
解:连接CE,作EF⊥BC于F,
由旋转变换的性质可知,∠CAE=60°,AC=AE,
∴△ACE是等边三角形,
∴CE=AC=4,∠ACE=60°,
∴∠ECF=30°,
∴EF=CE=2,
由勾股定理得,CF= = ,
∴BF=BC-CF= ,
由勾股定理得,BE== ,
故答案为:.
【点睛】
本题考查的是旋转变换的性质、等边三角形的判定和性质,掌握旋转变换对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.
18、﹣1 C.
【解析】
∵将数轴按如图所示从某一点开始折出一个等边三角形ABC,设点A表示的数为x﹣1,点B表示的数为2x+1,点C表示的数为﹣4,
∴﹣4﹣(2x+1)=2x+1﹣(x﹣1);
∴﹣1x=9,
x=﹣1.
故A表示的数为:x﹣1=﹣1﹣1=﹣6,
点B表示的数为:2x+1=2×(﹣1)+1=﹣5,
即等边三角形ABC边长为1,
数字2012对应的点与﹣4的距离为:2012+4=2016,
∵2016÷1=672,C从出发到2012点滚动672周,
∴数字2012对应的点将与△ABC的顶点C重合.
故答案为﹣1,C.
点睛:此题主要考查了等边三角形的性质,实数与数轴,一元一次方程等知识,本题将数与式的考查有机地融入“图形与几何”中,渗透“数形结合思想”、“方程思想”等,也是一道较优秀的操作活动型问题.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)B(1,1);(2)y=(x﹣n)2+2﹣n.(3)a=;a=+1.
【解析】
1) 首先求得点A的坐标, 再求得点B的坐标, 用h表示出点D的坐标后代入直线的解析式即可验证答案。
(2) ①根据两种不同的表示形式得到m和h之间的函数关系即可。
②点C作y轴的垂线, 垂足为E, 过点D作DF⊥CE于点F, 证得△ACE~△CDF, 然后用m表示出点C和点D的坐标, 根据相似三角形的性质求得m的值即可。
【详解】
解:(1)当x=0时候,y=﹣x+2=2,
∴A(0,2),
把A(0,2)代入y=(x﹣1)2+m,得1+m=2
∴m=1.
∴y=(x﹣1)2+1,
∴B(1,1)
(2)由(1)知,该抛物线的解析式为:y=(x﹣1)2+1,
∵∵D(n,2﹣n),
∴则平移后抛物线的解析式为:y=(x﹣n)2+2﹣n.
故答案是:y=(x﹣n)2+2﹣n.
(3)①∵C是两个抛物线的交点,
∴点C的纵坐标可以表示为:
(a﹣1)2+1或(a﹣n)2﹣n+2
由题意得(a﹣1)2+1=(a﹣n)2﹣n+2,
整理得2an﹣2a=n2﹣n
∵n>1
∴a==.
②过点C作y轴的垂线,垂足为E,过点D作DF⊥CE于点F
∵∠ACD=90°,
∴∠ACE=∠CDF
又∵∠AEC=∠DFC
∴△ACE∽△CDF
∴=.
又∵C(a,a2﹣2a+2),D(2a,2﹣2a),
∴AE=a2﹣2a,DF=m2,CE=CF=a
∴=
∴a2﹣2a=1
解得:a=±+1
∵n>1
∴a=>
∴a=+1
【点睛】本题主要考查二次函数的应用和相似三角形的判定与性质,需综合运用各知识求解。
20、(1);(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.
【解析】
【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;
(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.
【详解】(1)∵点A在直线y1=1x﹣1上,
∴设A(x,1x﹣1),
过A作AC⊥OB于C,
∵AB⊥OA,且OA=AB,
∴OC=BC,
∴AC=OB=OC,
∴x=1x﹣1,
x=1,
∴A(1,1),
∴k=1×1=4,
∴;
(1)∵,解得:,,
∴C(﹣1,﹣4),
由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.
【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.
21、(1)作图见解析;(2)作图见解析;(3)P(,0).
【解析】
(1)分别将点A、B、C向上平移1个单位,再向右平移5个单位,然后顺次连接;(2)根据网格结构找出点A、B、C以点O为旋转中心顺时针旋转90°后的对应点,然后顺次连接即可;(3)利用最短路径问题解决,首先作A1点关于x轴的对称点A3,再连接A2A3与x轴的交点即为所求.
【详解】
解:(1)如图所示,△A1B1C1为所求做的三角形;
(2)如图所示,△A2B2O为所求做的三角形;
(3)∵A2坐标为(3,1),A3坐标为(4,﹣4),
∴A2A3所在直线的解析式为:y=﹣5x+16,
令y=0,则x=,
∴P点的坐标(,0).
考点:平移变换;旋转变换;轴对称-最短路线问题.
22、0.3 4
【解析】
(1)由统计图易得a与b的值,继而将统计图补充完整;
(2)利用用样本估计总体的知识求解即可求得答案;
(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.
【详解】
(1)a=1﹣0.15﹣0.35﹣0.20=0.3;
∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);
故答案为0.3,4;
补全统计图得:
(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);
(3)画树状图得:
∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:=.
【点睛】
本题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.
23、调整后的滑梯AD比原滑梯AB增加2.5米
【解析】
试题分析: Rt△ABD中,根据30°的角所对的直角边是斜边的一半得到AD的长,然后在Rt△ABC中,求得AB的长后用即可求得增加的长度.
试题解析: Rt△ABD中,
∵AC=3米,
∴AD=2AC=6(m)
∵在Rt△ABC中,
∴AD−AB=6−3.53≈2.5(m).
∴调整后的滑梯AD比原滑梯AB增加2.5米.
24、(1)四;(2)见解析;(3) .
【解析】
(1)比较两个折线统计图,找出满足题意的调查次数即可;
(2)描出第四次与第五次北京森林覆盖率,补全折线统计图即可;
(3)根据第八次全面森林面积除以森林覆盖率求出全国总面积,除以第九次的森林覆盖率,即可得到结果.
【详解】
解:(1)观察两折线统计图比较得:从第四次清查开始,北京的森林覆盖率超过全国的森林覆盖率;
故答案为四;
(2)补全折线统计图,如图所示:
(3)根据题意得:×27.15%=,
则全国森林面积可以达到万公顷,
故答案为.
【点睛】
此题考查了折线统计图,弄清题中的数据是解本题的关键.
25、(1);(2).
【解析】
(1)直接根据概率公式求解即可;
(2)根据题意先画出树状图,得出所有情况数和甲、乙两位嘉宾能分为同队的结果数,再根据概率公式即可得出答案.
【详解】
解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同,
∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA1的概率是=;
(2)画树状图:
共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况,
则甲、乙两位嘉宾能分为同队的概率是.
26、(1)见解析;(2)见解析;(3)1.
【解析】
(1)如图2,延长AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答
(2)如图3,延长AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答
(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出规律即可解答
【详解】
(1)如图2,延长AB交CD于E,
则∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,
∴∠ABC=∠A+∠C+∠D;
(2)如图3,延长AB交CD于G,则∠ABC=∠BGC+∠C,
∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),
∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;
(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,
则∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,
∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An),
而∠2+∠4=310°﹣(∠1+∠3)=310°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An)],
∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A1……+∠An﹣(n﹣1)×180°.
故答案为1.
【点睛】
此题考查多边形的内角和外角,,解题的关键是熟练掌握三角形的外角的性质,属于中考常考题型
27、 (1) ;(2)-4.
【解析】
(1)先通分,再进行同分母的减法运算,然后约分得到原式
(2)利用根与系数的关系得到 然后利用整体代入的方法计算.
【详解】
解:(1)
.
(2)∵、是方程,
∴,
∴
【点睛】
本题考查了根与系数的关系:若x1,x2是一元二次方程 的两根时,, 也考查了分式的加减法.
北京市丰台区十八中学2021-2022学年中考冲刺卷数学试题含解析: 这是一份北京市丰台区十八中学2021-2022学年中考冲刺卷数学试题含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,已知等内容,欢迎下载使用。
2021-2022学年重庆市万州国本中学中考猜题数学试卷含解析: 这是一份2021-2022学年重庆市万州国本中学中考猜题数学试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,对于点A,,若点,下列说法等内容,欢迎下载使用。
2021-2022学年威海市重点中学中考猜题数学试卷含解析: 这是一份2021-2022学年威海市重点中学中考猜题数学试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,方程=的解为,已知等内容,欢迎下载使用。