04解答题(基础题)-四川省南充市五年(2018-2022)中考数学真题分类汇编(共25题)
展开04解答题-四川省南充市五年(2018-2022)中考数学真题分类汇编
一.实数的运算(共1小题)
1.(2018•南充)计算:﹣(1﹣)0+sin45°+()﹣1
二.整式的混合运算—化简求值(共2小题)
2.(2022•南充)先化简,再求值:(x+2)(3x﹣2)﹣2x(x+2),其中x=﹣1.
3.(2021•南充)先化简,再求值:(2x+1)(2x﹣1)﹣(2x﹣3)2,其中x=﹣1.
三.分式的化简求值(共1小题)
4.(2020•南充)先化简,再求值:(﹣1)÷,其中x=+1.
四.二次根式的混合运算(共1小题)
5.(2019•南充)计算:(1﹣π)0+|﹣|﹣+()﹣1.
五.一元一次方程的应用(共1小题)
6.(2022•南充)南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种产品,它们的进价和售价如下表.用15000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价﹣进价)
种类
真丝衬衣
真丝围巾
进价(元/件)
a
80
售价(元/件)
300
100
(1)求真丝衬衣进价a的值.
(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?
(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?
六.解一元二次方程-因式分解法(共1小题)
7.(2021•南充)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
(1)求证:无论k取何值,方程都有两个不相等的实数根.
(2)如果方程的两个实数根为x1,x2,且k与都为整数,求k所有可能的值.
七.根与系数的关系(共4小题)
8.(2022•南充)已知关于x的一元二次方程x2+3x+k﹣2=0有实数根.
(1)求实数k的取值范围.
(2)设方程的两个实数根分别为x1,x2,若(x1+1)(x2+1)=﹣1,求k的值.
9.(2020•南充)已知x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根.
(1)求k的取值范围.
(2)是否存在实数k,使得等式+=k﹣2成立?如果存在,请求出k的值;如果不存在,请说明理由.
10.(2018•南充)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.
(1)求证:方程有两个不相等的实数根.
(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.
11.(2019•南充)已知关于x的一元二次方程x2+(2m﹣1)x+m2﹣3=0有实数根.
(1)求实数m的取值范围;
(2)当m=2时,方程的根为x1,x2,求代数式(x12+2x1)(x22+4x2+2)的值.
八.一次函数的应用(共1小题)
12.(2018•南充)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.
(1)求一件A型、B型丝绸的进价分别为多少元?
(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.
①求m的取值范围.
②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).
九.反比例函数与一次函数的交点问题(共5小题)
13.(2022•南充)如图,直线AB与双曲线交于A(1,6),B(m,﹣2)两点,直线BO与双曲线在第一象限交于点C,连接AC.
(1)求直线AB与双曲线的解析式.
(2)求△ABC的面积.
14.(2021•南充)如图,反比例函数的图象与过点A(0,﹣1),B(4,1)的直线交于点B和C.
(1)求直线AB和反比例函数的解析式;
(2)已知点D(﹣1,0),直线CD与反比例函数图象在第一象限的交点为E,直接写出点E的坐标,并求△BCE的面积.
15.(2020•南充)如图,反比例函数y=(k≠0,x>0)的图象与y=2x的图象相交于点C,过直线上点A(a,8)作AB⊥y轴交于点B,交反比例函数图象于点D,且AB=4BD.
(1)求反比例函数的解析式.
(2)求四边形OCDB的面积.
16.(2019•南充)双曲线y=(k为常数,且k≠0)与直线y=﹣2x+b,交于A(﹣m,m﹣2),B(1,n)两点.
(1)求k与b的值;
(2)如图,直线AB交x轴于点C,交y轴于点D,若点E为CD的中点,求△BOE的面积.
17.(2018•南充)如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).
(1)求直线与双曲线的解析式.
(2)点P在x轴上,如果S△ABP=3,求点P的坐标.
一十.二次函数的应用(共3小题)
18.(2021•南充)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.
(1)求苹果的进价;
(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克,写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式;
(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完,据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为z=﹣x+12.在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量.(利润=销售收入﹣购进支出)
19.(2020•南充)某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件.
(1)如图,设第x(0<x≤20)个生产周期设备售价z万元/件,z与x之间的关系用图中的函数图象表示.求z关于x的函数解析式(写出x的范围).
(2)设第x个生产周期生产并销售的设备为y件,y与x满足关系式y=5x+40(0<x≤20).在(1)的条件下,工厂第几个生产周期创造的利润最大?最大为多少万元?(利润=收入﹣成本)
20.(2019•南充)在“我为祖国点赞“征文活动中,学校计划对获得一,二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元.
(1)钢笔、笔记本的单价分别为多少元?
(2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元?
一十一.二次函数综合题(共5小题)
21.(2022•南充)抛物线y=x2+bx+c与x轴分别交于点A,B(4,0),与y轴交于点C(0,﹣4).
(1)求抛物线的解析式.
(2)如图1,▱BCPQ顶点P在抛物线上,如果▱BCPQ面积为某值时,符合条件的点P有且只有三个,求点P的坐标.
(3)如图2,点M在第二象限的抛物线上,点N在MO延长线上,OM=2ON,连接BN并延长到点D,使ND=NB.MD交x轴于点E,∠DEB与∠DBE均为锐角,tan∠DEB=2tan∠DBE,求点M的坐标.
22.(2021•南充)如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=.
(1)求抛物线的解析式;
(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;
(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,使得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.
23.(2020•南充)已知二次函数图象过点A(﹣2,0),B(4,0),C(0,4).
(1)求二次函数的解析式.
(2)如图,当点P为AC的中点时,在线段PB上是否存在点M,使得∠BMC=90°?若存在,求出点M的坐标;若不存在,请说明理由.
(3)点K在抛物线上,点D为AB的中点,直线KD与直线BC的夹角为锐角θ,且tanθ=,求点K的坐标.
24.(2019•南充)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(﹣3,0),且OB=OC.
(1)求抛物线的解析式;
(2)点P在抛物线上,且∠POB=∠ACB,求点P的坐标;
(3)抛物线上两点M,N,点M的横坐标为m,点N的横坐标为m+4.点D是抛物线上M,N之间的动点,过点D作y轴的平行线交MN于点E.
①求DE的最大值;
②点D关于点E的对称点为F,当m为何值时,四边形MDNF为矩形.
25.(2018•南充)如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.
(1)求抛物线的解析式.
(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.
(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.
参考答案与试题解析
一.实数的运算(共1小题)
1.(2018•南充)计算:﹣(1﹣)0+sin45°+()﹣1
【解答】解:原式=﹣1﹣1++2
=.
二.整式的混合运算—化简求值(共2小题)
2.(2022•南充)先化简,再求值:(x+2)(3x﹣2)﹣2x(x+2),其中x=﹣1.
【解答】解:原式=(x+2)(3x﹣2﹣2x)
=(x+2)(x﹣2)
=x2﹣4,
当x=﹣1时,
原式=(﹣1)2﹣4=﹣2.
3.(2021•南充)先化简,再求值:(2x+1)(2x﹣1)﹣(2x﹣3)2,其中x=﹣1.
【解答】解:原式=4x2﹣1﹣(4x2﹣12x+9)
=4x2﹣1﹣4x2+12x﹣9
=12x﹣10.
∵x=﹣1,
∴12x﹣10=12×(﹣1)﹣10=﹣22.
三.分式的化简求值(共1小题)
4.(2020•南充)先化简,再求值:(﹣1)÷,其中x=+1.
【解答】解:(﹣1)÷
=
=
=
=,
当x=+1时,原式==﹣.
四.二次根式的混合运算(共1小题)
5.(2019•南充)计算:(1﹣π)0+|﹣|﹣+()﹣1.
【解答】解:原式=1+.
五.一元一次方程的应用(共1小题)
6.(2022•南充)南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种产品,它们的进价和售价如下表.用15000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价﹣进价)
种类
真丝衬衣
真丝围巾
进价(元/件)
a
80
售价(元/件)
300
100
(1)求真丝衬衣进价a的值.
(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?
(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?
【解答】解:(1)依题意得:50a+80×25=15000,
解得:a=260.
答:a的值为260.
(2)设购进真丝衬衣x件,则购进真丝围巾(300﹣x)件,
依题意得:300﹣x≥2x,
解得:x≤100.
设两种商品全部售出后获得的总利润为w元,则w=(300﹣260)x+(100﹣80)(300﹣x)=20x+6000.
∵20>0,
∴w随x的增大而增大,
∴当x=100时,w取得最大值,最大值=20×100+6000=8000,此时300﹣x=300﹣100=200.
答:当购进真丝衬衣100件,真丝围巾200件时,才能使本次销售获得的利润最大,最大利润是8000元.
(3)设每件真丝围巾降价y元,
依题意得:(300﹣260)×100+(100﹣80)××200+(100﹣y﹣80)××200≥8000×90%,
解得:y≤8.
答:每件真丝围巾最多降价8元.
六.解一元二次方程-因式分解法(共1小题)
7.(2021•南充)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
(1)求证:无论k取何值,方程都有两个不相等的实数根.
(2)如果方程的两个实数根为x1,x2,且k与都为整数,求k所有可能的值.
【解答】(1)证明:∵Δ=[﹣(2k+1)]2﹣4×(k2+k)=1>0,
∴无论k取何值,方程有两个不相等的实数根.
(2)解:∵x2﹣(2k+1)x+k2+k=0,即(x﹣k)[x﹣(k+1)]=0,
解得:x=k或x=k+1.
∴一元二次方程x2﹣(2k+1)x+k2+k=0的两根为k,k+1,
∴或,
如果1+为整数,则k为1的约数,
∴k=±1,
如果1﹣为整数,则k+1为1的约数,
∴k+1=±1,
则k为0或﹣2.
∴整数k的所有可能的值为±1,0或﹣2.
七.根与系数的关系(共4小题)
8.(2022•南充)已知关于x的一元二次方程x2+3x+k﹣2=0有实数根.
(1)求实数k的取值范围.
(2)设方程的两个实数根分别为x1,x2,若(x1+1)(x2+1)=﹣1,求k的值.
【解答】解:(1)∵关于x的一元二次方程x2+3x+k﹣2=0有实数根,
∴Δ=32﹣4×1×(k﹣2)≥0,
解得k≤,
即k的取值范围是k≤;
(2)∵方程x2+3x+k﹣2=0的两个实数根分别为x1,x2,
∴x1+x1=﹣3,x1x2=k﹣2,
∵(x1+1)(x2+1)=﹣1,
∴x1x2+(x1+x2)+1=﹣1,
∴k﹣2+(﹣3)+1=﹣1,
解得k=3,
即k的值是3.
9.(2020•南充)已知x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根.
(1)求k的取值范围.
(2)是否存在实数k,使得等式+=k﹣2成立?如果存在,请求出k的值;如果不存在,请说明理由.
【解答】解:(1)∵一元二次方程x2﹣2x+k+2=0有两个实数根,
∴Δ=(﹣2)2﹣4×1×(k+2)≥0,
解得:k≤﹣1,
∴k的取值范围为k≤﹣1.
(2)∵x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根,
∴x1+x2=2,x1x2=k+2.
∵+=k﹣2,
∴==k﹣2,
∵k2﹣4=2,
∴k2﹣6=0,
解得:k1=﹣,k2=,
经检验,k1=﹣,k2=均为原方程的解,k2=不符合题意,舍去,
∴k=﹣.
∴存在这样的k值,使得等式+=k﹣2成立,k值为﹣.
10.(2018•南充)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.
(1)求证:方程有两个不相等的实数根.
(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.
【解答】解:(1)由题意可知:Δ=(2m﹣2)2﹣4(m2﹣2m)
=4>0,
∴方程有两个不相等的实数根.
(2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,
∴+=(x1+x2)2﹣2x1x2=10,
∴(2m﹣2)2﹣2(m2﹣2m)=10,
∴m2﹣2m﹣3=0,
∴m=﹣1或m=3
11.(2019•南充)已知关于x的一元二次方程x2+(2m﹣1)x+m2﹣3=0有实数根.
(1)求实数m的取值范围;
(2)当m=2时,方程的根为x1,x2,求代数式(x12+2x1)(x22+4x2+2)的值.
【解答】解:(1)由题意△≥0,
∴(2m﹣1)2﹣4(m2﹣3)≥0,
∴m≤.
(2)当m=2时,方程为x2+3x+1=0,
∴x1+x2=﹣3,x1x2=1,
∵方程的根为x1,x2,
解法一:x12+3x1+1=0,x22+3x2+1=0,
∴(x12+2x1)(x22+4x2+2)
=(x12+2x1+x1﹣x1)(x22+3x2+x2+2)
=(﹣1﹣x1)(﹣1+x2+2)
=(﹣1﹣x1)(x2+1)
=﹣x2﹣x1x2﹣1﹣x1
=﹣x2﹣x1﹣2
=3﹣2
=1.
解法二:x12+2x1=3x1+x12﹣x1+1﹣1=﹣x1﹣1
x22+4x2+2=x22+3x2+1+x2+1=x2+1
∴(x12+2x1)(x22+4x2+2)
=(﹣1﹣x1)(x2+1)
=﹣x2﹣x1x2﹣1﹣x1
=﹣x2﹣x1﹣2
=3﹣2
=1.
八.一次函数的应用(共1小题)
12.(2018•南充)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.
(1)求一件A型、B型丝绸的进价分别为多少元?
(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.
①求m的取值范围.
②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).
【解答】解:(1)设B型丝绸的进价为x元,则A型丝绸的进价为(x+100)元
根据题意得:
解得x=400
经检验,x=400为原方程的解
∴x+100=500
答:一件A型、B型丝绸的进价分别为500元,400元.
(2)①根据题意得:
∴m的取值范围为:16≤m≤25且为整数.
②设销售这批丝绸的利润为y
根据题意得:
y=(800﹣500﹣2n)m+(600﹣400﹣n)•(50﹣m)
=(100﹣n)m+10000﹣50n
∵50≤n≤150
∴(Ⅰ)当50≤n<100时,100﹣n>0
m=25时,
销售这批丝绸的最大利润w=25(100﹣n)+10000﹣50n=﹣75n+12500
(Ⅱ)当n=100时,100﹣n=0,
销售这批丝绸的最大利润w=5000
(Ⅲ)当100<n≤150时,100﹣n<0
当m=16时,
销售这批丝绸的最大利润w=﹣66n+11600.
综上所述:w=.
九.反比例函数与一次函数的交点问题(共5小题)
13.(2022•南充)如图,直线AB与双曲线交于A(1,6),B(m,﹣2)两点,直线BO与双曲线在第一象限交于点C,连接AC.
(1)求直线AB与双曲线的解析式.
(2)求△ABC的面积.
【解答】解:(1)设双曲线的解析式为y=,
∵点A(1,6)在该双曲线上,
∴6=,
解得k=6,
∴y=,
∵B(m,﹣2)在双曲线y=上,
∴﹣2=,
解得m=﹣3,
设直线AB的函数解析式为y=ax+b,
,
解得,
即直线AB的解析式为y=2x+4;
(2)作BG∥x轴,FG∥y轴,FG和BG交于点G,作BE∥y轴,FA∥x轴,BE和FA交于点E,如右图所示,
直线BO的解析式为y=ax,
∵点B(﹣3,﹣2),
∴﹣2=﹣3a,
解得a=,
∴直线BO的解析式为y=x,
,
解得或,
∴点C的坐标为(3,2),
∵点A(1,6),B(﹣3,﹣2),C(3,2),
∴EB=8,BG=6,CG=4,CF=4,AF=2,AE=4,
∴S△ABC=S矩形EBGF﹣S△AEB﹣S△BGC﹣S△AFC
=8×6﹣﹣﹣
=48﹣16﹣12﹣4
=16.
14.(2021•南充)如图,反比例函数的图象与过点A(0,﹣1),B(4,1)的直线交于点B和C.
(1)求直线AB和反比例函数的解析式;
(2)已知点D(﹣1,0),直线CD与反比例函数图象在第一象限的交点为E,直接写出点E的坐标,并求△BCE的面积.
【解答】解:(1)设反比例函数解析式为y=,直线AB解析式为y=ax+b,
∵反比例函数的图象过点B(4,1),
∴k=4×1=4,
把点A(0,﹣1),B(4,1)代入y=ax+b得,
解得,
∴直线AB解析式为y=,反比例函数的解析式为y=;
(2)解得或,
∴C(﹣2,﹣2),
设直线CD的解析式为y=mx+n,
把C(﹣2,﹣2),D(﹣1,0)代入得,
解得,
∴直线CD的解析式为y=2x+2,
由得或,
∴E(1,4),
∴S△BCE=6×6﹣×3﹣﹣=.
15.(2020•南充)如图,反比例函数y=(k≠0,x>0)的图象与y=2x的图象相交于点C,过直线上点A(a,8)作AB⊥y轴交于点B,交反比例函数图象于点D,且AB=4BD.
(1)求反比例函数的解析式.
(2)求四边形OCDB的面积.
【解答】解:(1)∵点A(a,8)在直线y=2x上,
∴a=4,A(4,8),
∵AB⊥y轴于点B,AB=4BD,
∴BD=1,即D(1,8),
∵点D在y=上,
∴k=8.
∴反比例函数的解析式为y=.
(2)由,解得或(舍弃),
∴C(2,4),
∴S四边形OBDC=S△AOB﹣S△ADC=×4×8﹣×4×3=10.
16.(2019•南充)双曲线y=(k为常数,且k≠0)与直线y=﹣2x+b,交于A(﹣m,m﹣2),B(1,n)两点.
(1)求k与b的值;
(2)如图,直线AB交x轴于点C,交y轴于点D,若点E为CD的中点,求△BOE的面积.
【解答】解:(1)∵点A(﹣m,m﹣2),B(1,n)在直线y=﹣2x+b上,
∴,
解得:,
∴B(1,﹣4),
代入反比例函数解析式,
∴﹣4=,
∴k=﹣4.
(2)∵直线AB的解析式为y=﹣2x﹣2,
令x=0,解得y=﹣2,令y=0,解得x=﹣1,
∴C(﹣1,0),D(0,﹣2),
∵点E为CD的中点,
∴E(),
∴S△BOE=S△ODE+S△ODB==
=.
17.(2018•南充)如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).
(1)求直线与双曲线的解析式.
(2)点P在x轴上,如果S△ABP=3,求点P的坐标.
【解答】解:(1)∵双曲线y=(m≠0)经过点A(﹣,2),
∴m=﹣1.
∴双曲线的表达式为y=﹣.
∵点B(n,﹣1)在双曲线y=﹣上,
∴点B的坐标为(1,﹣1).
∵直线y=kx+b经过点A(﹣,2),B(1,﹣1),
∴,解得,
∴直线的表达式为y=﹣2x+1;
(2)当y=﹣2x+1=0时,x=,
∴点C(,0).
设点P的坐标为(x,0),
∵S△ABP=3,A(﹣,2),B(1,﹣1),
∴×3|x﹣|=3,即|x﹣|=2,
解得:x1=﹣,x2=.
∴点P的坐标为(﹣,0)或(,0).
一十.二次函数的应用(共3小题)
18.(2021•南充)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.
(1)求苹果的进价;
(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克,写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式;
(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完,据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为z=﹣x+12.在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量.(利润=销售收入﹣购进支出)
【解答】(1)解:设苹果的进价为x元/千克,
根据题意得:,
解得:x=10,
经检验x=10是原方程的根,且符合题意,
答:苹果的进价为10元/千克.
(2)解:当0≤x≤100时,y=10x;
当x>100时,y=10×100+(x﹣100)(10﹣2)=8x+200;
∴y=.
(3)解:当0≤x≤100时,
w=(z﹣10)x
=()x
=,
∴当x=100时,w有最大值为100;
当100<x≤300时,
w=(z﹣10)×100+(z﹣8)(x﹣100)
=()×100+()(x﹣100)
=
=,
∴当x=200时,w有最大值为200;
∵200>100,
∴一天购进苹果数量为200千克时,超市销售苹果利润最大为200元.
答:一天购进苹果数量为200千克时,超市销售苹果利润最大.
19.(2020•南充)某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件.
(1)如图,设第x(0<x≤20)个生产周期设备售价z万元/件,z与x之间的关系用图中的函数图象表示.求z关于x的函数解析式(写出x的范围).
(2)设第x个生产周期生产并销售的设备为y件,y与x满足关系式y=5x+40(0<x≤20).在(1)的条件下,工厂第几个生产周期创造的利润最大?最大为多少万元?(利润=收入﹣成本)
【解答】解:(1)由图可知,当0<x≤12时,z=16,
当12<x≤20时,z是关于x的一次函数,设z=kx+b,
则
解得:
∴z=﹣x+19,
∴z关于x的函数解析式为z=
(2)设第x个生产周期工厂创造的利润为w万元,
①当0<x≤12时,w=(16﹣10)×(5x+40)=30x+240,
∴由一次函数的性质可知,当x=12时,w最大值=30×12+240=600(万元);
②当12<x≤20时,
w=(﹣x+19﹣10)(5x+40)
=﹣x2+35x+360
=﹣(x﹣14)2+605,
因为﹣<0,
∴当x=14时,w最大值=605(万元).
综上所述,工厂第14个生产周期创造的利润最大,最大是605万元.
20.(2019•南充)在“我为祖国点赞“征文活动中,学校计划对获得一,二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元.
(1)钢笔、笔记本的单价分别为多少元?
(2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元?
【解答】解:(1)设钢笔、笔记本的单价分别为x、y元,
根据题意得,,
解得:,
答:钢笔、笔记本的单价分别为10元,6元;
(2)设钢笔的单价为a元,购买数量为b支,支付钢笔和笔记本的总金额w元,
①当30≤b≤50时,a=10﹣0.1(b﹣30)=﹣0.1b+13,w=b(﹣0.1b+13)+6(100﹣b)=﹣0.1b2+7b+600=﹣0.1(b﹣35)2+722.5,
∵当b=30时,w=720,当b=50时,w=700,
∴当30≤b≤50时,700≤w≤722.5;
②当50<b≤60时,a=8,w=8b+6(100﹣b)=2b+600,700<w≤720,
∴当30≤b≤60时,w的最小值为700元,
∴这次奖励一等奖学生50人时,购买奖品总金额最少,最少为700元.
一十一.二次函数综合题(共5小题)
21.(2022•南充)抛物线y=x2+bx+c与x轴分别交于点A,B(4,0),与y轴交于点C(0,﹣4).
(1)求抛物线的解析式.
(2)如图1,▱BCPQ顶点P在抛物线上,如果▱BCPQ面积为某值时,符合条件的点P有且只有三个,求点P的坐标.
(3)如图2,点M在第二象限的抛物线上,点N在MO延长线上,OM=2ON,连接BN并延长到点D,使ND=NB.MD交x轴于点E,∠DEB与∠DBE均为锐角,tan∠DEB=2tan∠DBE,求点M的坐标.
【解答】解:(1)由题意得,
,
∴,
∴y=﹣;
(2)如图1,
作直线l∥BC且与抛物线相切于点P1,直线l交y轴于E,作直线m∥BC且直线m到BC的距离等于直线l到BC的距离,
∵BC的解析式为y=x﹣4,
∴设直线l的解析式为:y=x+b,
由=x+b得,
x2﹣4x﹣3(b+4)=0,
∵Δ=0,
∴﹣3(b+4)=4,
∴b=﹣,
∴x2﹣4x+4=0,y=x﹣,
∴x=2,y=﹣,
∴P1(2,﹣),
∵E(0,﹣),C(0,﹣4),
∴F(0,﹣4×2﹣(﹣)),
即(0,﹣),
∴直线m的解析式为:y=x﹣,
∴,
∴,,
∴P2(2﹣2,﹣2﹣),P3(2+2,2﹣),
综上所述:点P(2,﹣)或(2﹣2,﹣2﹣)或(2+2,2﹣);
(3)如图2,
作MG⊥x轴于G,作NH⊥x轴于H,作MK⊥DF,交DF的延长线于K,
设D点的横坐标为a,
∵BN=DN,
∴BD=2BN,N点的横坐标为:,
∴OH=,
∵MH∥DF,
∴△BHN∽△BFD,
∴,
∴DF=2NH,
同理可得:△OMG∽△ONH,
∴=,
∴MG=2NH,OG=2OH=a+4,
∴KF=MG=DF,
∵tan∠DEB=2tan∠DBE
∴=2•,
∴EF=,
∵BF=4﹣a,
∴EF=,
∵EF∥MK,
∴△DEF∽△DMK,
∴=,
∴,
∴a=0,
∴OG=a+4=4,
∴G(﹣4,0),
当x=﹣4时,y=﹣﹣4=,
∴M(﹣4,).
22.(2021•南充)如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=.
(1)求抛物线的解析式;
(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;
(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,使得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.
【解答】解:(1)由题意得:,解得,
故抛物线的表达式为y=x2﹣5x+4①;
(2)对于y=x2﹣5x+4,令y=x2﹣5x+4=0,解得x=1或4,令x=0,则y=4,
故点B的坐标为(4,0),点C(0,4),
设直线BC的表达式为y=kx+t,则,解得,
故直线BC的表达式为y=﹣x+4,
设点P的坐标为(x,﹣x+4),则点Q的坐标为(x,x2﹣5x+4),
则PQ=(﹣x+4)﹣(x2﹣5x+4)=﹣x2+4x,
∵﹣1<0,
故PQ有最大值,当x=2时,PQ的最大值为4=CO,
此时点Q的坐标为(2,﹣2);
∵PQ=CO,PQ∥OC,
故四边形OCPQ为平行四边形;
(3)∵D是OC的中点,则点D(0,2),
由点D、Q的坐标,同理可得,直线DQ的表达式为y=﹣2x+2,
过点Q作QH⊥x轴于点H,
则QH∥CO,故∠AQH=∠ODA,
而∠DQE=2∠ODQ.
∴∠HQA=∠HQE,
则直线AQ和直线QE关于直线QH对称,
故设直线QE的表达式为y=2x+r,
将点Q的坐标代入上式并解得r=﹣6,
故直线QE的表达式为y=2x﹣6②,
联立①②并解得(不合题意的值已舍去),
故点E的坐标为(5,4),
设点F的坐标为(0,m),
由点B、E的坐标得:BE2=(5﹣4)2+(4﹣0)2=17,
同理可得,当BE=BF时,即16+m2=17,解得m=±1;
当BE=EF时,即25+(m﹣4)2=17,方程无解;
当BF=EF时,即16+m2=25+(m﹣4)2,解得m=;
故点F的坐标为(0,1)或(0,﹣1)或(0,).
23.(2020•南充)已知二次函数图象过点A(﹣2,0),B(4,0),C(0,4).
(1)求二次函数的解析式.
(2)如图,当点P为AC的中点时,在线段PB上是否存在点M,使得∠BMC=90°?若存在,求出点M的坐标;若不存在,请说明理由.
(3)点K在抛物线上,点D为AB的中点,直线KD与直线BC的夹角为锐角θ,且tanθ=,求点K的坐标.
【解答】解:(1)∵二次函数图象过点B(4,0),点A(﹣2,0),
∴设二次函数的解析式为y=a(x+2)(x﹣4),
∵二次函数图象过点C(0,4),
∴4=a(0+2)(0﹣4),
∴a=﹣,
∴二次函数的解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;
(2)存在,
理由如下:如图1,取BC中点Q,连接MQ,
∵点A(﹣2,0),B(4,0),C(0,4),点P是AC中点,点Q是BC中点,
∴P(﹣1,2),点Q(2,2),BC==4,
设直线BP解析式为:y=kx+b,
由题意可得:,
解得:
∴直线BP的解析式为:y=﹣x+,
∵∠BMC=90°
∴点M在以BC为直径的圆上,
∴设点M(c,﹣c+),
∵点Q是Rt△BCM的中点,
∴MQ=BC=2,
∴MQ2=8,
∴(c﹣2)2+(﹣c+﹣2)2=8,
∴c=4或﹣,
当c=4时,点B,点M重合,即c=4,不合题意舍去,
∴c=﹣,则点M坐标(﹣,),
故线段PB上存在点M(﹣,),使得∠BMC=90°;
(3)如图2,过点D作DE⊥BC于点E,设直线DK与BC交于点N,
∵点A(﹣2,0),B(4,0),C(0,4),点D是AB中点,
∴点D(1,0),OB=OC=4,AB=6,BD=3,
∴∠OBC=45°,
∵DE⊥BC,
∴∠EDB=∠EBD=45°,
∴DE=BE==,
∵点B(4,0),C(0,4),
∴直线BC解析式为:y=﹣x+4,
设点E(n,﹣n+4),
∴﹣n+4=,
∴n=,
∴点E(,),
在Rt△DNE中,NE===,
①若DK与射线EC交于点N(m,4﹣m),
∵NE=BN﹣BE,
∴=(4﹣m)﹣,
∴m=,
∴点N(,),
∴直线DK解析式为:y=4x﹣4,
联立方程组可得:,
解得:或,
∴点K坐标为(2,4)或(﹣8,﹣36);
②若DK与射线EB交于N(m,4﹣m),
∵NE=BE﹣BN,
∴=﹣(4﹣m),
∴m=,
∴点N(,),
∴直线DK解析式为:y=x﹣,
联立方程组可得:,
解得:或,
∴点K坐标为(,)或(,),
综上所述:点K的坐标为(2,4)或(﹣8,﹣36)或(,)或(,).
24.(2019•南充)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(﹣3,0),且OB=OC.
(1)求抛物线的解析式;
(2)点P在抛物线上,且∠POB=∠ACB,求点P的坐标;
(3)抛物线上两点M,N,点M的横坐标为m,点N的横坐标为m+4.点D是抛物线上M,N之间的动点,过点D作y轴的平行线交MN于点E.
①求DE的最大值;
②点D关于点E的对称点为F,当m为何值时,四边形MDNF为矩形.
【解答】解:(1)∵抛物线与x轴交于点A(﹣1,0),点B(﹣3,0)
∴设交点式y=a(x+1)(x+3)
∵OC=OB=3,点C在y轴负半轴
∴C(0,﹣3)
把点C代入抛物线解析式得:3a=﹣3
∴a=﹣1
∴抛物线解析式为y=﹣(x+1)(x+3)=﹣x2﹣4x﹣3
(2)如图1,过点A作AG⊥BC于点G,过点P作PH⊥x轴于点H
∴∠AGB=∠AGC=∠PHO=90°
∵∠ACB=∠POB
∴△ACG∽△POH
∴
∴
∵OB=OC=3,∠BOC=90°
∴∠ABC=45°,BC==3
∴△ABG是等腰直角三角形
∴AG=BG=AB=
∴CG=BC﹣BG=3﹣=2
∴
∴OH=2PH
设P(p,﹣p2﹣4p﹣3)
①当p<﹣3或﹣1<p<0时,点P在点B左侧或在AC之间,横纵坐标均为负数
∴OH=﹣p,PH=﹣(﹣p2﹣4p﹣3)=p2+4p+3
∴﹣p=2(p2+4p+3)
解得:p1=,p2=
∴P(,)或(,)
②当﹣3<p<﹣1或p>0时,点P在AB之间或在点C右侧,横纵坐标异号
∴p=2(p2+4p+3)
解得:p1=﹣2,p2=﹣
∴P(﹣2,1)或(﹣,)
综上所述,点P的坐标为(,)、(,)、(﹣2,1)或(﹣,).
(3)①如图2,∵x=m+4时,y=﹣(m+4)2﹣4(m+4)﹣3=﹣m2﹣12m﹣35
∴M(m,﹣m2﹣4m﹣3),N(m+4,﹣m2﹣12m﹣35)
设直线MN解析式为y=kx+n
∴ 解得:
∴直线MN:y=(﹣2m﹣8)x+m2+4m﹣3
设D(d,﹣d2﹣4d﹣3)(m<d<m+4)
∵DE∥y轴
∴xE=xD=d,E(d,(﹣2m﹣8)d+m2+4m﹣3)
∴DE=﹣d2﹣4d﹣3﹣[(﹣2m﹣8)d+m2+4m﹣3]=﹣d2+(2m+4)d﹣m2﹣4m=﹣[d﹣(m+2)]2+4
∴当d=m+2时,DE的最大值为4.
②如图3,∵D、F关于点E对称,
∴DE=EF
∵四边形MDNF是矩形
∴MN=DF,且MN与DF互相平分
∴DE=MN,E为MN中点
∴xD=xE==m+2
由①得当d=m+2时,DE=4
∴MN=2DE=8
∴(m+4﹣m)2+[﹣m2﹣12m﹣35﹣(﹣m2﹣4m﹣3)]2=82
解得:m1=﹣4﹣,m2=﹣4+
∴m的值为﹣4﹣或﹣4+时,四边形MDNF为矩形.
25.(2018•南充)如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.
(1)求抛物线的解析式.
(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.
(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.
【解答】解:(1)设y=a(x﹣1)2+4(a≠0),
把C(0,3)代入抛物线解析式得:a+4=3,即a=﹣1,
则抛物线解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3;
(2)由B(3,0),C(0,3),得到直线BC解析式为y=﹣x+3,
∵S△PBC=S△QBC,
∴PQ∥BC,
①过P作PQ∥BC,交抛物线于点Q,如图1所示,
∵P(1,4),∴直线PQ解析式为y=﹣x+5,
联立得:,
解得:或,即(1,4)与P重合,Q1(2,3);
②∵S△BCQ=S△BCP,
∴PG=GH
∵直线BC的解析式为y=﹣x+3,P(1,4)
∴G(1,2),
∴PG=GH=2,
过H作直线Q2Q3∥BC,交x轴于点H,则直线Q2Q3解析式为y=﹣x+1,
联立得:,
解得:或,
∴Q2(,),Q3(,);
(3)存在点M,N使四边形MNED为正方形,
如图2所示,过M作MF∥y轴,过N作NF∥x轴,过N作NH∥y轴,则有△MNF与△NEH都为等腰直角三角形,
设M(x1,y1),N(x2,y2),设直线MN解析式为y=﹣x+b,
联立得:,
消去y得:x2﹣3x+b﹣3=0,
∴NF2=|x1﹣x2|2=(x1+x2)2﹣4x1x2=21﹣4b,
∵△MNF为等腰直角三角形,
∴MN2=2NF2=42﹣8b,
∵H(x2,﹣x2+3),
∴NH2=[y2﹣(﹣x2+3)]2=(﹣x2+b+x2﹣3)2=(b﹣3)2,
∴NE2=(b﹣3)2,
若四边形MNED为正方形,则有NE2=MN2,
∴42﹣8b=(b2﹣6b+9),
整理得:b2+10b﹣75=0,
解得:b=﹣15或b=5,
∵正方形边长为MN=,
∴MN=9或.
04解答题容易题、基础题-浙江台州市五年(2018-2022)中考数学真题分类汇编: 这是一份04解答题容易题、基础题-浙江台州市五年(2018-2022)中考数学真题分类汇编,共16页。试卷主要包含了容易题,基础题等内容,欢迎下载使用。
04解答题基础题知识点分类-天津市五年(2018-2022)中考数学真题分类汇编: 这是一份04解答题基础题知识点分类-天津市五年(2018-2022)中考数学真题分类汇编,共21页。试卷主要包含了解不等式组等内容,欢迎下载使用。
04解答题(基础题)-四川省达州市五年(2018-2022)中考数学真题分类汇编(共25题): 这是一份04解答题(基础题)-四川省达州市五年(2018-2022)中考数学真题分类汇编(共25题),共41页。试卷主要包含了0+2sin60°﹣|1﹣|,0+,﹣2+﹣,,其中a=﹣1,÷的值,其中x=+1,化简代数式等内容,欢迎下载使用。