河北省衡水市深州市2021-2022学年高一下学期期末考试数学试卷
展开2021~2022学年深州市中学高一年级期末考试
数学试卷
一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 若,则在复平面内复数z对应的点位于( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
2. 已知集合,则( )
A. B. C. D.
3. 已知,,,则的大小关系是
A. B.
C. D.
4. 小张一星期的总开支分布如图所示,一星期的食品开支如图所示,则小张一星期的肉类开支占总开支的百分比约为( )
A. 10% B. 8% C. 5% D. 4%
5. 若,则( )
A. B. C. D.
6. 在中,若,则的形状一定是( )
A 等腰三角形 B. 直角三角形
C. 正三角形 D. 不能确定
7. 已知四边形的对角线交于点O,E为的中点,若,则( )
A. B. C. D. 1
8. 已知正数x,y满足,则的最小值为( )
A. 4 B. 5 C. 6 D. 7
二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
9. 在中,,则的面积可以是( )
A. B. 1 C. D.
10. 已知函数,且的图象过两点,则下列函数图象(部分)正确的是( )
A. B.
C. D.
11. 已知向量,下列结论正确的是( )
A. 与能作为一组基底
B. 与同向的单位向量的坐标为
C. 与夹角的正弦值为
D. 若满足,则
12. 如图,将正方形沿对角线折成直二面角,则下列四个结论中正确的是( )
A.
B. 是等边三角形
C. 与所成的角为
D. 与平面所成角为
三、填空题:本题共4小题,每小题5分,共20分.
13. 已知是虚数单位,复数z满足,则复数z的模为___________.
14. 抽样统计某位射击运动员10次的训练成绩分别为,则该运动员这10次成绩的分位数为___________,中位数为___________.
15. 在三棱锥P-ABC中,PA⊥AB,AC⊥AB,PA=3,AC=4,PC=5,且三棱锥P-ABC的外接球的表面积为28π,则AB=______.
16. 随着生活水平的不断提高,人们更加关注健康,重视锻炼.通过“小步道”,走出“大健康”,健康步道成为引领健康生活的一道亮丽风景线.如图,为某区的一条健康步道,其中为线段,三点共线,是以为直径的半圆,,.则该健康步道的长度为___________.
四、解答题:本题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤.
17. 有两位射击运动员在一次射击测试中各射靶7次,每次命中的环数如下:
甲 6 9 7 8 8 5 6
乙 a 3 9 8 9 6 4
经计算可得甲、乙两名射击运动员的平均成绩是一样的.
(1)求实数a的值;
(2)请通过计算,判断甲、乙两名射击运动员哪一位的成绩更稳定?
18. 已知向量,向量的夹角的正切值为,.
(1)求向量的模;
(2)若,求实数k的值.
19. 已知函数.
(1)求函数的单调区间;
(2)求函数图象的对称中心的坐标和对称轴方程.
20. 如图,在四棱锥中,底面是矩形,,是棱上一点,且平面.
(1)证明:平面平面;
(2)求直线与平面所成角的正弦值.
21. 在中,内角所对的边分别为,且满足.
(1)求的值;
(2)已知面积为,求a的值.
22. 已知函数是偶函数.
(1)求实数值;
(2)若函数的最小值为,求实数的值;
(3)当为何值时,讨论关于的方程的根的个数.
答案
1-8 BDBAC AAC 9.AD 10.ABD 11.ACD 12.ABC
13.
14. ①. ## ②. ##
15.
16.
17.(1)10; (2)甲的成绩比乙更稳定.
18.(1);(2)7.
19.(1)增区间为,减区间为
(2)对称中心的坐标为;对称轴方程为
20. (1)
在矩形中,所以,
平面平面平面,
,
在中,为中点,
,
,即,
又平面平面,
平面,
又平面平面平面;
(2)
21.(1)2 (2)1
22.(1)
(2)
(3)当时,方程有一个根;
当时,方程没有根;
当或或时,方程有两个根;
当时,方程有三个根;
当时,方程有四个根.
河北省衡水市武强中学2023-2024学年高一上学期期末考试数学试卷(Word版附解析): 这是一份河北省衡水市武强中学2023-2024学年高一上学期期末考试数学试卷(Word版附解析),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年河北省衡水市武强中学高一(下)期末数学试卷(含解析): 这是一份2022-2023学年河北省衡水市武强中学高一(下)期末数学试卷(含解析),共16页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年河北省衡水市重点中学高一(下)期末数学试卷: 这是一份2022-2023学年河北省衡水市重点中学高一(下)期末数学试卷,共16页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。