终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    江西省南昌市2022届第一次教学质量检测理科数学试题

    立即下载
    加入资料篮
    江西省南昌市2022届第一次教学质量检测理科数学试题第1页
    江西省南昌市2022届第一次教学质量检测理科数学试题第2页
    江西省南昌市2022届第一次教学质量检测理科数学试题第3页
    还剩3页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江西省南昌市2022届第一次教学质量检测理科数学试题

    展开

    这是一份江西省南昌市2022届第一次教学质量检测理科数学试题,共6页。试卷主要包含了已知集合,,则,已知,已知,,则“”是“”的,已知数列的前项和为,,,则,已知若,则等内容,欢迎下载使用。
    江西省南昌市2022届第次教学质量检测理科数学试题1.已知集合,则       A B C D2.已知为虚数单位),则复数在复平面内所对应的点一定在(       A.实轴上 B.虚轴上C.第一、三象限的角平分线上 D.第二、四象限的角平分线上3.根据分类变量的观察数据,计算得到,依据下表给出的独立性检验中的小概率值和相应的临界值,作出下列判断,正确的是(       0.10.050.010.0050.0012.7063.8416.6357.87910.828 A.有95%的把握认为变量独立B.有95%的把握认为变量不独立C.变量独立,这个结论犯错误的概率不超过10%D.变量不独立,这个结论犯错误的概率不超过10%4.圆柱形玻璃杯中盛有高度为10cm的水,若放入一个玻璃球(球的半径与圆柱形玻璃杯内壁的底面半径相同)后,水恰好淹没了玻璃球,则玻璃球的半径为(       A B15cm C D20cm5.已知,则的(       A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知数列的前项和为,则       A12 B C D7.已知,则       A2 B C1 D08.纳皮尔在他的《奇妙的对数表》一书中说过:没有什么比大数的运算更让数学工作者头痛,更阻碍了天文学的发展.许凯和斯蒂菲尔这两个数学家都想到了构造了如下一个双数列模型的方法处理大数运算.012345678910124816326412825651210241112192021222324252048409652428810485762097152419430483886081677721633554432 ,我们发现51292相乘,1024102相乘.这两者的积,其实就是2的个数做一个加法.所以只需要计算.那么接下来找到19对应的数524288,这就是结果了.,则落在区间(       A B C D9的内角所对边分别为,若的面积为,则       A B C D10.已知在边长为6的菱形中,,点分别是线段上的点,且.将四边形沿翻折,当折起后得到的几何体的体积最大时,下列说法:平面平面平面平面平面,其中正确的个数是(       A1 B2 C3 D411.已知函数,若不等式的解集为,且,则函数的极大值为(       A B C0 D12.已知是圆上的一个动点,则的最大值为(       A B C D 二、填空题13.已知中心在原点的双曲线的离心率为2,右顶点为,过的左焦点轴的垂线,且交于两点,若的面积为9,则的标准方程为___________.14是互相垂直的单位向量,,则上的投影为___________.15.从的展开式各项的系数中任取两个,其和为奇数的概率是___________.16.已知数列是数列的前项和,则___________.三、解答题17.已知圆心在坐标原点的两个同心圆的半径分别为12,点和点分别从初始位置处,按逆时针方向以相同速率同时作圆周运动.(1)当点运动的路程为时,求线段的长度;(2),求的最大值.18.如图,三棱锥的底面为直角三角形,为斜边的中点,顶点在底面的投影为.(1)的长;(2)求二面角的余弦值.19.为弘扬中国传统文化,某电视台举行国宝知识大赛,先进行预赛,规则如下:有易、中、难三类题,共进行四轮比赛,每轮选手自行选择一类题,随机抽出该类题中的一个回答;答对得分,答错不得分;四轮答题中,每类题最多选择两次.四轮答题得分总和不低于10分进入决赛.选手甲答对各题是相互独立的,答对每类题的概率及得分如下表: 容易题中等题难题答对概率0.60.50.3答对得分345 (1)若甲前两轮都选择了中等题,并只答对了一个,你认为他后两轮应该怎样选择答题,并说明理由;(2)甲四轮答题中,选择了一个容易题、两个中等题、一个难题,若容易题答对,记甲预赛四轮得分总和为,求随机变量的数学期望.20.已知函数.(1)时,求的单调区间;(2)若函数恰有两个极值点,记极大值和极小值分别为,求证:.21.已知面积为的等边是坐标原点)的三个顶点都在抛物线上,过点作抛物线的两条切线分别交轴于两点.(1)的值;(2)的外接圆的方程. 22.在直角坐标系中,直线的参数方程为为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的极坐标方程与曲线的直角坐标方程;(2)若直线与曲线在直角坐标系第一象限交于点,点的极坐标为,求的面积.23.已知函数.(1)时,求不等式的解集;(2),使得,求的取值范围.
     

    相关试卷

    2021届江西省南昌市高三三模考试理科数学试题(扫描版含答案):

    这是一份2021届江西省南昌市高三三模考试理科数学试题(扫描版含答案),共4页。

    江西省南昌市2021届高三一模理科数学试题:

    这是一份江西省南昌市2021届高三一模理科数学试题,共2页。

    2023届江西省南昌市第三次模拟测试(三模)理科数学试题:

    这是一份2023届江西省南昌市第三次模拟测试(三模)理科数学试题,共5页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map