山东省泰安岱岳区六校联考2022年中考试题猜想数学试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.如图中任意画一个点,落在黑色区域的概率是( )
A. B. C.π D.50
2.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是( )
A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙
3.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为( )
A.90° B.120° C.270° D.360°
4.已知点M (-2,3 )在双曲线上,则下列一定在该双曲线上的是( )
A.(3,-2 ) B.(-2,-3 ) C.(2,3 ) D.(3,2)
5.如图,直线a∥b,直线c与直线a、b分别交于点A、点B,AC⊥AB于点A,交直线b于点C.如果∠1=34°,那么∠2的度数为( )
A.34° B.56° C.66° D.146°
6.人的大脑每天能记录大约8 600万条信息,数据8 600用科学记数法表示为( )
A.0.86×104 B.8.6×102 C.8.6×103 D.86×102
7.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为( )
A.5 B.6 C.7 D.8
8.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为( )
A.4 B.3 C.2 D.1
9.|﹣3|=( )
A. B.﹣ C.3 D.﹣3
10.若顺次连接四边形各边中点所得的四边形是菱形,则四边形一定是( )
A.矩形 B.菱形
C.对角线互相垂直的四边形 D.对角线相等的四边形
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,▱ABCD中,对角线AC,BD相交于点O,且AC⊥BD,请你添加一个适当的条件________,使ABCD成为正方形.
12.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为_____.
13.已知,直接y=kx+b(k>0,b>0)与x轴、y轴交A、B两点,与双曲线y=(x>0)交于第一象限点C,若BC=2AB,则S△AOB=________.
14.二次根式中,x的取值范围是 .
15.如图,在平面直角坐标系中,点A是抛物线与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为 .
16.有一枚质地均匀的骰子,六个面分别表有1到6的点数,任意将它抛掷两次,并将两次朝上面的点数相加,则其和小于6的概率是______.
三、解答题(共8题,共72分)
17.(8分)如图,在平面直角坐标系中,矩形DOBC的顶点O与坐标原点重合,B、D分别在坐标轴上,点C的坐标为(6,4),反比例函数y=(x>0)的图象经过线段OC的中点A,交DC于点E,交BC于点F.
(1)求反比例函数的解析式;
(2)求△OEF的面积;
(3)设直线EF的解析式为y=k2x+b,请结合图象直接写出不等式k2x+b>的解集.
18.(8分)解分式方程:
- =
19.(8分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:
根据统计图所提供的信息,解答下列问题:
(1)本次抽样调查中的样本容量是 ;
(2)补全条形统计图;
(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.
20.(8分)如图,过点A(2,0)的两条直线,分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.
求点B的坐标;若△ABC的面积为4,求的解析式.
21.(8分)关于x的一元二次方程x2﹣x﹣(m+2)=0有两个不相等的实数根.求m的取值范围;若m为符合条件的最小整数,求此方程的根.
22.(10分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C(0,2)
(1)求抛物线的表达式;
(2)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线的对称轴上是否存在点P,使△BMP与△ABD相似?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.
23.(12分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表.
征文比赛成绩频数分布表
分数段 | 频数 | 频率 |
60≤m<70 | 38 | 0.38 |
70≤m<80 | a | 0.32 |
80≤m<90 | b | c |
90≤m≤100 | 10 | 0.1 |
合计 |
| 1 |
请根据以上信息,解决下列问题:
(1)征文比赛成绩频数分布表中c的值是 ;
(2)补全征文比赛成绩频数分布直方图;
(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.
24.先化简,然后从﹣1,0,2中选一个合适的x的值,代入求值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
抓住黑白面积相等,根据概率公式可求出概率.
【详解】
因为,黑白区域面积相等,
所以,点落在黑色区域的概率是.
故选B
【点睛】
本题考核知识点:几何概率.解题关键点:分清黑白区域面积关系.
2、B
【解析】
分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.
详解:乙和△ABC全等;理由如下:
在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,
所以乙和△ABC全等;
在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,
所以丙和△ABC全等;
不能判定甲与△ABC全等;
故选B.
点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
3、B
【解析】
先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.
【详解】
∵图中是三个等边三角形,∠3=60°,
∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,
∠BAC=180°-60°-∠1=120°-∠1,
∵∠ABC+∠ACB+∠BAC=180°,
∴60°+(120°-∠2)+(120°-∠1)=180°,
∴∠1+∠2=120°.
故选B.
【点睛】
考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.
4、A
【解析】
因为点M(-2,3)在双曲线上,所以xy=(-2)×3=-6,四个答案中只有A符合条件.故选A
5、B
【解析】
分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.
详解:∵直线a∥b,∴∠2+∠BAD=180°.
∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.
故选B.
点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.
6、C
【解析】
科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.
【详解】
数据8 600用科学记数法表示为8.6×103
故选C.
【点睛】
用科学记数法表示一个数的方法是
(1)确定a:a是只有一位整数的数;
(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).
7、C
【解析】
作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.
【详解】
解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,
设D(x,),
∵四边形ABCD是正方形,
∴AD=CD=BC,∠ADC=∠DCB=90°,
易得△AGD≌△DHC≌△CMB(AAS),
∴AG=DH=﹣x﹣1,
∴DG=BM,
∵GQ=1,DQ=﹣,DH=AG=﹣x﹣1,
由QG+DQ=BM=DQ+DH得:1﹣=﹣1﹣x﹣,
解得x=﹣2,
∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,
∵AG=DH=﹣1﹣x=1,
∴点E的纵坐标为﹣4,
当y=﹣4时,x=﹣,
∴E(﹣,﹣4),
∴EH=2﹣=,
∴CE=CH﹣HE=4﹣=,
∴S△CEB=CE•BM=××4=7;
故选C.
【点睛】
考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题.
8、A
【解析】
分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.
详解:根据题意,得:=2x
解得:x=3,
则这组数据为6、7、3、9、5,其平均数是6,
所以这组数据的方差为 [(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,
故选A.
点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.
9、C
【解析】
根据绝对值的定义解答即可.
【详解】
|-3|=3
故选:C
【点睛】
本题考查的是绝对值,理解绝对值的定义是关键.
10、C
【解析】
【分析】如图,根据三角形的中位线定理得到EH∥FG,EH=FG,EF=BD,则可得四边形EFGH是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案.
【点睛】如图,∵E,F,G,H分别是边AD,DC,CB,AB的中点,
∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,
∴EH∥FG,EH=FG,
∴四边形EFGH是平行四边形,
假设AC=BD,
∵EH=AC,EF=BD,
则EF=EH,
∴平行四边形EFGH是菱形,
即只有具备AC=BD即可推出四边形是菱形,
故选D.
【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、∠BAD=90° (不唯一)
【解析】
根据正方形的判定定理添加条件即可.
【详解】
解:∵平行四边形 ABCD的对角线AC与BD相交于点O,且AC⊥BD,
∴四边形ABCD是菱形,
当∠BAD=90°时,四边形ABCD为正方形.
故答案为:∠BAD=90°.
【点睛】
本题考查了正方形的判定:先判定平行四边形是菱形,判定这个菱形有一个角为直角.
12、﹣1
【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可.
【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,
整理得k2+1k=0,解得k1=0,k2=﹣1,
因为k≠0,
所以k的值为﹣1.
故答案为:﹣1.
【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
13、
【解析】
根据题意可设出点C的坐标,从而得到OA和OB的长,进而得到△AOB的面积即可.
【详解】
∵直接y=kx+b与x轴、y轴交A、B两点,与双曲线y=交于第一象限点C,若BC=2AB,设点C的坐标为(c,)
∴OA=0.5c,OB==,
∴S△AOB===
【点睛】
此题主要考查反比例函数的图像,解题的关键是根据题意设出C点坐标进行求解.
14、.
【解析】
根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
15、18。
【解析】
根据二次函数的性质,抛物线的对称轴为x=3。
∵A是抛物线与y轴的交点,点B是这条抛物线上的另一 点,且AB∥x轴。
∴A,B关于x=3对称。∴AB=6。
又∵△ABC是等边三角形,∴以AB为边的等边三角形ABC的周长为6×3=18。
16、
【解析】
列举出所有情况,看两个骰子向上的一面的点数和小于6的情况占总情况的多少即可.
【详解】
解:列表得:
两个骰子向上的一面的点数和小于6的有10种,
则其和小于6的概率是,
故答案为:.
【点睛】
本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件树状图法适用于两步或两步以上完成的事件解题时还要注意是放回实验还是不放回实验用到的知识点为:概率所求情况数与总情况数之比.
三、解答题(共8题,共72分)
17、(1)y=;(2);(3)<x<1.
【解析】
(1)先利用矩形的性质确定C点坐标(1,4),再确定A点坐标为(3,2),根据反比例函数图象上点的坐标特征得到k1=1,即反比例函数解析式为y=;(2)利用反比例函数解析式确定F点的坐标为(1,1),E点坐标为(,4),然后根据△OEF的面积=S矩形BCDO﹣S△ODE﹣S△OBF﹣S△CEF进行计算;
(3)观察函数图象得到当<x<1时,一次函数图象都在反比例函数图象上方,即k2x+b>.
【详解】
(1)∵四边形DOBC是矩形,且点C的坐标为(1,4),
∴OB=1,OD=4,
∵点A为线段OC的中点,
∴A点坐标为(3,2),
∴k1=3×2=1,
∴反比例函数解析式为y=;
(2)把x=1代入y=得y=1,则F点的坐标为(1,1);
把y=4代入y=得x=,则E点坐标为(,4),
△OEF的面积=S矩形BCDO﹣S△ODE﹣S△OBF﹣S△CEF
=4×1﹣×4×﹣×1×1﹣×(1﹣)×(4﹣1)
=;
(3)由图象得:不等式不等式k2x+b>的解集为<x<1.
【点睛】
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解即可.
18、方程无解
【解析】
找出分式方程的最简公分母,去分母后转化为整式方程,求出整式方程的解得到x的值,再代入最简公分母进行检验即可.
【详解】
解:方程的两边同乘(x+1)(x−1),
得:,
,
∴此方程无解
【点睛】
本题主要考查了解分式方程,解分式方程的步骤:①去分母;②解整式方程;③验根.
19、(1)100;(2)作图见解析;(3)1.
【解析】
试题分析:(1)根据百分比= 计算即可;
(2)求出“打球”和“其他”的人数,画出条形图即可;
(3)用样本估计总体的思想解决问题即可.
试题解析:(1)本次抽样调查中的样本容量=30÷30%=100,
故答案为100;
(2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,条形图如图所示:
(3)估计该校课余兴趣爱好为“打球”的学生人数为2000×40%=1人.
20、(1)(0,3);(2).
【解析】
(1)在Rt△AOB中,由勾股定理得到OB=3,即可得出点B的坐标;
(2)由=BC•OA,得到BC=4,进而得到C(0,-1).设的解析式为, 把A(2,0),C(0,-1)代入即可得到的解析式.
【详解】
(1)在Rt△AOB中,
∵,
∴,
∴OB=3,
∴点B的坐标是(0,3) .
(2)∵=BC•OA,
∴BC×2=4,
∴BC=4,
∴C(0,-1).
设的解析式为,
把A(2,0),C(0,-1)代入得:,
∴,
∴的解析式为是.
考点:一次函数的性质.
21、(1)m>;(2)x1=0,x2=1.
【解析】
解答本题的关键是是掌握好一元二次方程的根的判别式.
(1)求出△=5+4m>0即可求出m的取值范围;
(2)因为m=﹣1为符合条件的最小整数,把m=﹣1代入原方程求解即可.
【详解】
解:(1)△=1+4(m+2)
=9+4m>0
∴.
(2)∵为符合条件的最小整数,
∴m=﹣2.
∴原方程变为
∴x1=0,x2=1.
考点:1.解一元二次方程;2.根的判别式.
22、 (1)y=﹣x2+x+2;(2)满足条件的点P的坐标为(,)或(,﹣)或(,5)或(,﹣5).
【解析】
(1)利用待定系数法求抛物线的表达式;
(2)使△BMP与△ABD相似的有三种情况,分别求出这三个点的坐标.
【详解】
(1)∵抛物线与x轴交于点A(﹣1,0),B(4,0),
∴设抛物线的解析式为y=a(x+1)(x﹣4),
∵抛物线与y轴交于点C(0,2),
∴a×1×(﹣4)=2,
∴a=﹣,
∴抛物线的解析式为y=﹣(x+1)(x﹣4)=﹣x2+x+2;
(2)如图1,连接CD,∵抛物线的解析式为y=﹣x2+x+2,
∴抛物线的对称轴为直线x=,
∴M(,0),∵点D与点C关于点M对称,且C(0,2),
∴D(3,﹣2),
∵MA=MB,MC=MD,
∴四边形ACBD是平行四边形,
∵A(﹣1,0),B(4,0),C(3,﹣22),
∴AB2=25,BD2=(4﹣1)2+22=5,AD2=(3+1)2+22=20,
∴AD2+BD2=AB2,
∴△ABD是直角三角形,
∴∠ADB=90°,
设点P(,m),
∴MP=|m|,
∵M(,0),B(4,0),
∴BM=,
∵△BMP与△ABD相似,
∴①当△BMP∽ADB时,
∴,
∴,
∴m=±,
∴P(,)或(,﹣),
②当△BMP∽△BDA时,
,
∴,
∴m=±5,
∴P(,5)或(,﹣5),
即:满足条件的点P的坐标为P(,)或(,﹣)或(,5)或(,﹣5).
【点睛】
本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.
23、(1)0.2;(2)答案见解析;(3)300
【解析】
第一问,根据频率的和为1,求出c的值;第二问,先用分数段是90到100的频数和频率求出总的样本数量,然后再乘以频率分别求出a和b的值,再画出频数分布直方图;第三问用全市征文的总篇数乘以80分以上的频率得到全市80分以上的征文的篇数.
【详解】
解:(1)1﹣0.38﹣0.32﹣0.1=0.2,
故答案为0.2;
(2)10÷0.1=100,
100×0.32=32,100×0.2=20,
补全征文比赛成绩频数分布直方图:
(3)全市获得一等奖征文的篇数为:1000×(0.2+0.1)=300(篇).
【点睛】
掌握有关频率和频数的相关概念和计算,是解答本题的关键.
24、-.
【解析】
先把分式除法转换成乘法进行约分化简,然后再找出分式的最小公分母通分进行化简求值,在代入求值时要保证每一个分式的分母不能为1
【详解】
解:原式= -
= -
=
=
=- .
当x=-1或者x=1时分式没有意义
所以选择当x=2时,原式=.
【点睛】
分式的化简求值是此题的考点,需要特别注意的是分式的分母不能为1.
山东省青岛市集团校联考2022年中考试题猜想数学试卷含解析: 这是一份山东省青岛市集团校联考2022年中考试题猜想数学试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,一、单选题,下列计算正确的是等内容,欢迎下载使用。
山东省济宁嘉祥县联考2022年中考试题猜想数学试卷含解析: 这是一份山东省济宁嘉祥县联考2022年中考试题猜想数学试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,一元一次不等式2等内容,欢迎下载使用。
山东省济南天桥区四校联考2022年中考试题猜想数学试卷含解析: 这是一份山东省济南天桥区四校联考2022年中考试题猜想数学试卷含解析,共23页。试卷主要包含了若一个正比例函数的图象经过A等内容,欢迎下载使用。