2022届山东省烟台芝罘区六校联考中考试题猜想数学试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,已知△ABC的三个顶点均在格点上,则cosA的值为( )
A. B. C. D.
2.下列关于x的方程中一定没有实数根的是( )
A. B. C. D.
3.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是( )
A. B. C. D.
4.下列四个图形中,是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
5.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为( )
A.6 B.12 C.18 D.24
6.如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是( )
A.相切 B.相交 C.相离 D.无法确定
7.下列说法中,正确的是( )
A.长度相等的弧是等弧
B.平分弦的直径垂直于弦,并且平分弦所对的两条弧
C.经过半径并且垂直于这条半径的直线是圆的切线
D.在同圆或等圆中90°的圆周角所对的弦是这个圆的直径
8.下列运算正确的是( )
A. B.
C. D.
9.如右图是用八块完全相同的小正方体搭成的几何体,从正面看几何体得到的图形是( )
A. B.
C. D.
10.一元二次方程x2+x﹣2=0的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.只有一个实数根 D.没有实数根
11.下列实数中是无理数的是( )
A. B.2﹣2 C.5. D.sin45°
12.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=5 ,则∠B的度数是( )
A.30° B.45° C.50° D.60°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2017的值为____.
14.为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.1,2.39,2.1,2.40,2.1.这组数据的中位数和众数分别是_____.
15.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于_____.
16.若关于的一元二次方程有两个不相等的实数根,则的取值范围为__________.
17.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:
①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC
其中正确的是_____(填序号)
18.方程=1的解是___.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某农场用2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷?
20.(6分)如图,B、E、C、F在同一直线上,AB=DE,BE=CF,∠B=∠DEF,求证:AC=DF.
21.(6分)如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.
(1)请判断直线BC与⊙O的位置关系,并说明理由;
(2)已知AD=5,CD=4,求BC的长.
22.(8分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(-3,m+8),B(n,-6)两点.求一次函数与反比例函数的解析式;求△AOB的面积.
23.(8分)某生姜种植基地计划种植A,B两种生姜30亩.已知A,B两种生姜的年产量分别为2000千克/亩、2500千克/亩,收购单价分别是8元/千克、7元/千克.
(1)若该基地收获两种生姜的年总产量为68000千克,求A,B两种生姜各种多少亩?
(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A,B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?
24.(10分)已知二次函数 y=mx2﹣2mx+n 的图象经过(0,﹣3).
(1)n= _____________;
(2) 若二次函数 y=mx2﹣2mx+n 的图象与 x 轴有且只有一个交点,求 m 值;
(3) 若二次函数 y=mx2﹣2mx+n 的图象与平行于 x 轴的直线 y=5 的一个交点的横坐标为4,则另一个交点的坐标为 ;
(4) 如图,二次函数 y=mx2﹣2mx+n 的图象经过点 A(3,0),连接 AC,点 P 是抛物线位于线段 AC 下方图象上的任意一点,求△PAC 面积的最大值.
25.(10分)已知,关于x的方程x2﹣mx+m2﹣1=0,
(1)不解方程,判断此方程根的情况;
(2)若x=2是该方程的一个根,求m的值.
26.(12分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.按约定,“某顾客在该天早餐得到两个鸡蛋”是 事件(填“随机”、“必然”或“不可能”);请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.
27.(12分)规定:不相交的两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离”
(1)求抛物线y=x2﹣2x+3与x轴的“亲近距离”;
(2)在探究问题:求抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由.
(3)若抛物线y=x2﹣2x+3与抛物线y=+c的“亲近距离”为,求c的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
过B点作BD⊥AC,如图,
由勾股定理得,AB=,AD=,
cosA===,
故选D.
2、B
【解析】
根据根的判别式的概念,求出△的正负即可解题.
【详解】
解: A. x2-x-1=0,△=1+4=50,∴原方程有两个不相等的实数根,
B. , △=36-144=-1080,∴原方程没有实数根,
C. , , △=10,∴原方程有两个不相等的实数根,
D. , △=m2+80,∴原方程有两个不相等的实数根,
故选B.
【点睛】
本题考查了根的判别式,属于简单题,熟悉根的判别式的概念是解题关键.
3、B
【解析】
试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.
考点:由实际问题抽象出分式方程
4、D
【解析】
根据轴对称图形与中心对称图形的概念判断即可.
【详解】
A、是轴对称图形,不是中心对称图形;
B、是轴对称图形,不是中心对称图形;
C、是轴对称图形,不是中心对称图形;
D、不是轴对称图形,是中心对称图形.
故选D.
【点睛】
本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
5、B
【解析】
∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,
∵AC的垂直平分线交AD于点E,∴AE=CE,
∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12,
故选B.
6、B
【解析】
首先过点A作AM⊥BC,根据三角形面积求出AM的长,得出直线BC与DE的距离,进而得出直线与圆的位置关系.
【详解】
解:过点A作AM⊥BC于点M,交DE于点N,∴AM×BC=AC×AB,∴AM===2.1.
∵D、E分别是AC、AB的中点,∴DE∥BC,DE=BC=2.5,∴AN=MN=AM,∴MN=1.2.
∵以DE为直径的圆半径为1.25,∴r=1.25>1.2,∴以DE为直径的圆与BC的位置关系是:相交.
故选B.
【点睛】
本题考查了直线和圆的位置关系,利用中位线定理得出BC到圆心的距离与半径的大小关系是解题的关键.
7、D
【解析】
根据切线的判定,圆的知识,可得答案.
【详解】
解:A、在等圆或同圆中,长度相等的弧是等弧,故A错误;
B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故B错误;
C、经过半径的外端并且垂直于这条半径的直线是圆的切线,故C错误;
D、在同圆或等圆中90°的圆周角所对的弦是这个圆的直径,故D正确;
故选:D.
【点睛】
本题考查了切线的判定及圆的知识,利用圆的知识及切线的判定是解题关键.
8、D
【解析】
【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.
【详解】A. ,故A选项错误,不符合题意;
B. ,故B选项错误,不符合题意;
C. ,故C选项错误,不符合题意;
D. ,正确,符合题意,
故选D.
【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.
9、B
【解析】
找到从正面看所得到的图形即可,注意所有从正面看到的棱都应表现在主视图中.
【详解】
解:从正面看该几何体,有3列正方形,分别有:2个,2个,2个,如图.
故选B.
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看到的视图,属于基础题型.
10、A
【解析】
∵∆=12-4×1×(-2)=9>0,
∴方程有两个不相等的实数根.
故选A.
点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
11、D
【解析】
A、是有理数,故A选项错误;
B、是有理数,故B选项错误;
C、是有理数,故C选项错误;
D、是无限不循环小数,是无理数,故D选项正确;
故选:D.
12、D
【解析】
根据圆周角定理的推论,得∠B=∠D.根据直径所对的圆周角是直角,得∠ACD=90°.
在直角三角形ACD中求出∠D.
则sinD=
∠D=60°
∠B=∠D=60°.
故选D.
“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
把点(m,0)代入y=x2﹣x﹣1,求出m2﹣m=1,代入即可求出答案.
【详解】
∵二次函数y=x2﹣x﹣1的图象与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2017=1+2017=1.
故答案为:1.
【点睛】
本题考查了抛物线与x轴的交点问题,求代数式的值的应用,解答此题的关键是求出m2﹣m=1,难度适中.
14、2.40,2.1.
【解析】
∵把7天的成绩从小到大排列为:2.12,2.21,2.39,2.40,2.1,2.1,2.1.
∴它们的中位数为2.40,众数为2.1.
故答案为2.40,2.1.
点睛:本题考查了中位数和众数的求法,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.一组数据中出现次数最多的数是这组数据的众数.
15、210°
【解析】
根据三角形内角和定理得到∠B=45°,∠E=60°,根据三角形的外角的性质计算即可.
【详解】
解:如图:
∵∠C=∠F=90°,∠A=45°,∠D=30°,
∴∠B=45°,∠E=60°,
∴∠2+∠3=120°,
∴∠α+∠β=∠A+∠1+∠4+∠B=∠A+∠B+∠2+∠3=90°+120°=210°,
故答案为:210°.
【点睛】
本题考查的是三角形的外角的性质、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.
16、.
【解析】
根据判别式的意义得到,然后解不等式即可.
【详解】
解:关于的一元二次方程有两个不相等的实数根,
,
解得:,
故答案为:.
【点睛】
此题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.
17、①②④
【解析】
由正方形的性质和相似三角形的判定与性质,即可得出结论.
【详解】
∵△BPC是等边三角形,
∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,
在正方形ABCD中,
∵AB=BC=CD,∠A=∠ADC=∠BCD=90°
∴∠ABE=∠DCF=30°,
∴BE=2AE;故①正确;
∵PC=CD,∠PCD=30°,
∴∠PDC=75°,
∴∠FDP=15°,
∵∠DBA=45°,
∴∠PBD=15°,
∴∠FDP=∠PBD,
∵∠DFP=∠BPC=60°,
∴△DFP∽△BPH;故②正确;
∵∠FDP=∠PBD=15°,∠ADB=45°,
∴∠PDB=30°,而∠DFP=60°,
∴∠PFD≠∠PDB,
∴△PFD与△PDB不会相似;故③错误;
∵∠PDH=∠PCD=30°,∠DPH=∠DPC,
∴△DPH∽△CPD,
∴,
∴DP2=PH•PC,故④正确;
故答案是:①②④.
【点睛】
本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.
18、x=﹣4
【解析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
去分母得:3+2x=x﹣1,
解得:x=﹣4,
经检验x=﹣4是分式方程的解.
【点睛】
此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、1台大收割机和1台小收割机每小时各收割小麦0.4hm2和0.2hm2.
【解析】
此题可设1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,根据题中的等量关系列出二元一次方程组解答即可
【详解】
设1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷
根据题意可得
解得
答:每台大小收割机每小时分别收割0.4公顷和0.2公顷.
【点睛】
此题主要考查了二元一次方程组的实际应用,解题关键在于弄清题意,找到合适的等量关系
20、见解析
【解析】
由BE=CF可得BC=EF,即可判定,再利用全等三角形的性质证明即可.
【详解】
∵BE=CF,
∴,
即BC=EF,
又∵AB=DE,∠B=∠DEF,
∴在与中,
,
∴,
∴AC=DF.
【点睛】
本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定定理是解决本题的关键.
21、(1)BC与相切;理由见解析;
(2)BC=6
【解析】
试题分析:(1)BC与相切;由已知可得∠BAD=∠BED又由∠DBC=∠BED可得∠BAD=∠DBC,由AB为直径可得∠ADB=90°,从而可得∠CBO=90°,继而可得BC与相切
(2)由AB为直径可得∠ADB=90°,从而可得∠BDC=90°,由BC与相切,可得∠CBO=90°,从而可得∠BDC=∠CBO,可得,所以得,得,由可得AC=9,从而可得BC=6(BC="-6" 舍去)
试题解析:(1)BC与相切;
∵,∴∠BAD=∠BED ,∵∠DBC=∠BED,∴∠BAD=∠DBC,∵AB为直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠DBC+∠ABD=90°,∴∠CBO=90°,∴点B在上,∴BC与相切
(2)∵AB为直径,∴∠ADB=90°,∴∠BDC=90°,∵BC与相切,∴∠CBO=90°,∴∠BDC=∠CBO,∴,∴,∴,∵,∴AC=9,∴,∴BC=6(BC="-6" 舍去)
考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.勾股定理.
22、(1)y=-,y=-2x-1(2)1
【解析】
试题分析:(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;
(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据S△AOB=S△AOC+S△BOC列式计算即可得解.
试题解析:(1)将A(﹣3,m+8)代入反比例函数y=得,
=m+8,
解得m=﹣6,
m+8=﹣6+8=2,
所以,点A的坐标为(﹣3,2),
反比例函数解析式为y=﹣,
将点B(n,﹣6)代入y=﹣得,﹣=﹣6,
解得n=1,
所以,点B的坐标为(1,﹣6),
将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,
,
解得,
所以,一次函数解析式为y=﹣2x﹣1;
(2)设AB与x轴相交于点C,
令﹣2x﹣1=0解得x=﹣2,
所以,点C的坐标为(﹣2,0),
所以,OC=2,
S△AOB=S△AOC+S△BOC,
=×2×3+×2×1,
=3+1,
=1.
考点:反比例函数与一次函数的交点问题.
23、(1)种植A种生姜14亩,种植B种生姜16亩;(2) 种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.
【解析】
试题分析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据:A种生姜的产量+B种生姜的产量=总产量,列方程求解;
(2)设A种生姜x亩,根据A种生姜的亩数不少于B种的一半,列不等式求x的取值范围,再根据(1)的等量关系列出函数关系式,在x的取值范围内求总产量的最大值.
试题解析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,
根据题意,2000x+2500(30-x)=68000,
解得x=14,
∴30-x=16,
答:种植A种生姜14亩,种植B种生姜16亩;
(2)由题意得,x≥(30-x),解得x≥10,
设全部收购该基地生姜的年总收入为y元,则
y=8×2000x+7×2500(30-x)=-1500x+525000,
∵y随x的增大而减小,∴当x=10时,y有最大值,
此时,30-x=20,y的最大值为510000元,
答:种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.
【点睛】本题考查了一次函数的应用.关键是根据总产量=A种生姜的产量+B种生姜的产量,列方程或函数关系式.
24、(2)-2;(2)m=﹣2;(2)(﹣2,5);(4)当a=时,△PAC的面积取最大值,最大值为
【解析】
(2)将(0,-2)代入二次函数解析式中即可求出n值;
(2)由二次函数图象与x轴只有一个交点,利用根的判别式△=0,即可得出关于m的一元二次方程,解之取其非零值即可得出结论;
(2)根据二次函数的解析式利用二次函数的性质可找出二次函数图象的对称轴,利用二次函数图象的对称性即可找出另一个交点的坐标;
(4)将点A的坐标代入二次函数解析式中可求出m值,由此可得出二次函数解析式,由点A、C的坐标,利用待定系数法可求出直线AC的解析式,过点P作PD⊥x轴于点D,交AC于点Q,设点P的坐标为(a,a2-2a-2),则点Q的坐标为(a,a-2),点D的坐标为(a,0),根据三角形的面积公式可找出S△ACP关于a的函数关系式,配方后即可得出△PAC面积的最大值.
【详解】
解:(2)∵二次函数y=mx2﹣2mx+n的图象经过(0,﹣2),
∴n=﹣2.
故答案为﹣2.
(2)∵二次函数y=mx2﹣2mx﹣2的图象与x轴有且只有一个交点,
∴△=(﹣2m)2﹣4×(﹣2)m=4m2+22m=0,
解得:m2=0,m2=﹣2.
∵m≠0,
∴m=﹣2.
(2)∵二次函数解析式为y=mx2﹣2mx﹣2,
∴二次函数图象的对称轴为直线x=﹣=2.
∵该二次函数图象与平行于x轴的直线y=5的一个交点的横坐标为4,
∴另一交点的横坐标为2×2﹣4=﹣2,
∴另一个交点的坐标为(﹣2,5).
故答案为(﹣2,5).
(4)∵二次函数y=mx2﹣2mx﹣2的图象经过点A(2,0),
∴0=9m﹣6m﹣2,
∴m=2,
∴二次函数解析式为y=x2﹣2x﹣2.
设直线AC的解析式为y=kx+b(k≠0),
将A(2,0)、C(0,﹣2)代入y=kx+b,得:
,解得:,
∴直线AC的解析式为y=x﹣2.
过点P作PD⊥x轴于点D,交AC于点Q,如图所示.
设点P的坐标为(a,a2﹣2a﹣2),则点Q的坐标为(a,a﹣2),点D的坐标为(a,0),
∴PQ=a﹣2﹣(a2﹣2a﹣2)=2a﹣a2,
∴S△ACP=S△APQ+S△CPQ=PQ•OD+PQ•AD=﹣a2+a=﹣(a﹣)2+,
∴当a=时,△PAC的面积取最大值,最大值为 .
【点睛】
本题考查了待定系数法求一次(二次)函数解析式、抛物线与x轴的交点、二次函数的性质以及二次函数的最值,解题的关键是:(2)代入点的坐标求出n值;(2)牢记当△=b2-4ac=0时抛物线与x轴只有一个交点;(2)利用二次函数的对称轴求出另一交点的坐标;(4)利用三角形的面积公式找出S△ACP关于a的函数关系式.
25、(1)证明见解析;(2)m=2或m=1.
【解析】
(1)由△=(-m)2-4×1×(m2-1)=4>0即可得;
(2)将x=2代入方程得到关于m的方程,解之可得.
【详解】
(1)∵△=(﹣m)2﹣4×1×(m2﹣1)
=m2﹣m2+4
=4>0,
∴方程有两个不相等的实数根;
(2)将x=2代入方程,得:4﹣2m+m2﹣1=0,
整理,得:m2﹣8m+12=0,
解得:m=2或m=1.
【点睛】
本题考查了根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)将x=2代入原方程求出m值.
26、(1)不可能;(2).
【解析】
(1)利用确定事件和随机事件的定义进行判断;
(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.
【详解】
(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;
故答案为不可能;
(2)画树状图:
共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,
所以某顾客该天早餐刚好得到菜包和油条的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
27、(1)2;(2)不同意他的看法,理由详见解析;(3)c=1.
【解析】
(1)把y=x2﹣2x+3配成顶点式得到抛物线上的点到x轴的最短距离,然后根据题意解决问题;
(2)如图,P点为抛物线y=x2﹣2x+3任意一点,作PQ∥y轴交直线y=x﹣1于Q,设P(t,t2﹣2t+3),则Q(t,t﹣1),则PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函数的性质得到抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”,然后对他的看法进行判断;
(3)M点为抛物线y=x2﹣2x+3任意一点,作MN∥y轴交抛物线于N,设M(t,t2﹣2t+3),则N(t,t2+c),与(2)方法一样得到MN的最小值为﹣c,从而得到抛物线y=x2﹣2x+3与抛物线的“亲近距离”,所以,然后解方程即可.
【详解】
(1)∵y=x2﹣2x+3=(x﹣1)2+2,
∴抛物线上的点到x轴的最短距离为2,
∴抛物线y=x2﹣2x+3与x轴的“亲近距离”为:2;
(2)不同意他的看法.理由如下:
如图,P点为抛物线y=x2﹣2x+3任意一点,作PQ∥y轴交直线y=x﹣1于Q,
设P(t,t2﹣2t+3),则Q(t,t﹣1),
∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,
当t=时,PQ有最小值,最小值为,
∴抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”为,
而过抛物线的顶点向x轴作垂线与直线相交,抛物线顶点与交点之间的距离为2,
∴不同意他的看法;
(3)M点为抛物线y=x2﹣2x+3任意一点,作MN∥y轴交抛物线于N,
设M(t,t2﹣2t+3),则N(t,t2+c),
∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,
当t=时,MN有最小值,最小值为﹣c,
∴抛物线y=x2﹣2x+3与抛物线的“亲近距离”为﹣c,
∴,
∴c=1.
【点睛】
本题是二次函数的综合题,考查了二次函数图象上点的坐标特征和二次函数的性质,正确理解新定义是解题的关键.
2023-2024学年山东省烟台芝罘区六校联考九上数学期末联考试题含答案: 这是一份2023-2024学年山东省烟台芝罘区六校联考九上数学期末联考试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,下列说法正确的是,函数y=kx﹣k等内容,欢迎下载使用。
山东省烟台市芝罘区2022年中考数学适应性模拟试题含解析: 这是一份山东省烟台市芝罘区2022年中考数学适应性模拟试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
山东省济南天桥区四校联考2022年中考试题猜想数学试卷含解析: 这是一份山东省济南天桥区四校联考2022年中考试题猜想数学试卷含解析,共23页。试卷主要包含了若一个正比例函数的图象经过A等内容,欢迎下载使用。