山东省淄博沂源县联考2021-2022学年中考试题猜想数学试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在平行四边形ABCD中,∠ABC的平分线BF交AD于点F,FE∥AB.若AB=5,AD=7,BF=6,则四边形ABEF的面积为( )
A.48 B.35 C.30 D.24
2.下列说法正确的是( )
A.一个游戏的中奖概率是则做10次这样的游戏一定会中奖
B.为了解全国中学生的心理健康情况,应该采用普查的方式
C.一组数据 8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是 8
D.若甲组数据的方差 S=" 0.01" ,乙组数据的方差 s= 0 .1 ,则乙组数据比甲组数据稳定
3.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为( )
A.31cm B.41cm C.51cm D.61cm
4.函数y=中,自变量x的取值范围是( )
A.x>3 B.x<3 C.x=3 D.x≠3
5.如图,在△ABC中,点D、E分别在边AB、AC的反向延长线上,下面比例式中,不能判定ED//BC的是( )
A. B.
C. D.
6.如图,是半圆圆的直径,的两边分别交半圆于,则为的中点,已知,则( )
A. B. C. D.
7.如图,AD∥BC,AC平分∠BAD,若∠B=40°,则∠C的度数是( )
A.40° B.65° C.70° D.80°
8.下面运算结果为的是
A. B. C. D.
9.比1小2的数是( )
A. B. C. D.
10.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示,根据图形所提供的样本数据,可得学生参加科技活动的频率是( )
A.0.15 B.0.2 C.0.25 D.0.3
二、填空题(共7小题,每小题3分,满分21分)
11.甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同,已知甲平均每分钟比乙少打20个字,如果设甲平均每分钟打字的个数为x,那么符合题意的方程为:______.
12.如果等腰三角形的两内角度数相差45°,那么它的顶角度数为_____.
13.方程3x2﹣5x+2=0的一个根是a,则6a2﹣10a+2=_____.
14.如图,点A,B,C在⊙O上,四边形OABC是平行四边形,OD⊥AB于点E,交⊙O于点D,则∠BAD=_______°.
15.抛物线y=(x﹣3)2+1的顶点坐标是____.
16.不等式组的解集为_____.
17.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于______.
三、解答题(共7小题,满分69分)
18.(10分)如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.求证:BC是⊙O的切线;已知AD=3,CD=2,求BC的长.
19.(5分)黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.
(1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;
(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?
20.(8分)如图,在一次测量活动中,小华站在离旗杆底部(B处)6米的D处,仰望旗杆顶端A,测得仰角为60°,眼睛离地面的距离ED为1.5米.试帮助小华求出旗杆AB的高度.(结果精确到0.1米,).
21.(10分)计算:(-)-2 – 2()+
22.(10分)已知:不等式≤2+x
(1)求不等式的解;
(2)若实数a满足a>2,说明a是否是该不等式的解.
23.(12分)先化简,再求值:(x﹣2﹣)÷,其中x=.
24.(14分)已知关于x的方程.
(1)当该方程的一个根为1时,求a的值及该方程的另一根;
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
分析:首先证明四边形ABEF为菱形,根据勾股定理求出对角线AE的长度,从而得出四边形的面积.
详解:∵AB∥EF,AF∥BE, ∴四边形ABEF为平行四边形, ∵BF平分∠ABC,
∴四边形ABEF为菱形, 连接AE交BF于点O, ∵BF=6,BE=5,∴BO=3,EO=4,
∴AE=8,则四边形ABEF的面积=6×8÷2=24,故选D.
点睛:本题主要考查的是菱形的性质以及判定定理,属于中等难度的题型.解决本题的关键就是根据题意得出四边形为菱形.
2、C
【解析】
众数,中位数,方差等概念分析即可.
【详解】
A、中奖是偶然现象,买再多也不一定中奖,故是错误的;
B、全国中学生人口多,只需抽样调查就行了,故是错误的;
C、这组数据的众数和中位数都是8,故是正确的;
D、方差越小越稳定,甲组数据更稳定,故是错误.故选C.
【点睛】
考核知识点:众数,中位数,方差.
3、C
【解析】
∵DG是AB边的垂直平分线,
∴GA=GB,
△AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,
∴△ABC的周长=AC+BC+AB=51cm,
故选C.
4、D
【解析】
由题意得,x﹣1≠0,
解得x≠1.
故选D.
5、C
【解析】
根据平行线分线段成比例定理推理的逆定理,对各选项进行逐一判断即可.
【详解】
A. 当时,能判断;
B. 当时,能判断;
C. 当时,不能判断;
D. 当时,,能判断.
故选:C.
【点睛】
本题考查平行线分线段成比例定理推理的逆定理,根据定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.能根据定理判断线段是否为对应线段是解决此题的关键.
6、C
【解析】
连接AE,只要证明△ABC是等腰三角形,AC=AB即可解决问题.
【详解】
解:如图,连接AE,
∵AB是直径,
∴∠AEB=90°,即AE⊥BC,
∵EB=EC,
∴AB=AC,
∴∠C=∠B,
∵∠BAC=50°,
∴∠C= (180°-50°)=65°,
故选:C.
【点睛】
本题考查了圆周角定理、等腰三角形的判定和性质、线段的垂直平分线的性质定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.
7、C
【解析】
根据平行线性质得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度数.
【详解】
解:∵AD∥BC,
∴∠B+∠BAD=180°,
∵∠B=40°,
∴∠BAD=140°,
∵AC平分∠DAB,
∴∠DAC=∠BAD=70°,
∵A∥BC,
∴∠C=∠DAC=70°,
故选C.
【点睛】
本题考查了平行线性质和角平分线定义,关键是求出∠DAC或∠BAC的度数.
8、B
【解析】
根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.
【详解】
. ,此选项不符合题意;
.,此选项符合题意;
.,此选项不符合题意;
.,此选项不符合题意;
故选:.
【点睛】
本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.
9、C
【解析】
1-2=-1,故选C
10、B
【解析】
读图可知:参加课外活动的人数共有(15+30+20+35)=100人,
其中参加科技活动的有20人,所以参加科技活动的频率是=0.2,
故选B.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据工作时间=工作总量÷工作效率结合甲打135个字所用时间与乙打180个字所用时间相同,即可得出关于x的分式方程.
【详解】
∵甲平均每分钟打x个字,
∴乙平均每分钟打(x+20)个字,
根据题意得:,
故答案为.
【点睛】
本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
12、90°或30°.
【解析】
分两种情况讨论求解:顶角比底角大45°;顶角比底角小45°.
【详解】
设顶角为x度,则
当底角为x°﹣45°时,2(x°﹣45°)+x°=180°,
解得x=90°,
当底角为x°+45°时,2(x°+45°)+x°=180°,
解得x=30°,
∴顶角度数为90°或30°.
故答案为:90°或30°.
【点睛】
本题考查了等腰三角形的两个底角相等即分类讨论的数学思想,解答本题的关键是分顶角比底角大45°或顶角比底角小45°两种情况进行计算.
13、-1
【解析】
根据一元二次方程的解的定义,将x=a代入方程3x1-5x+1=0,列出关于a的一元二次方程,通过变形求得3a1-5a的值后,将其整体代入所求的代数式并求值即可.
【详解】
解:∵方程3x1-5x+1=0的一个根是a,
∴3a1-5a+1=0,
∴3a1-5a=-1,
∴6a1-10a+1=1(3a1-5a)+1=-1×1+1=-1.
故答案是:-1.
【点睛】
此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.
14、15
【解析】
根据圆的基本性质得出四边形OABC为菱形,∠AOB=60°,然后根据同弧所对的圆心角与圆周角之间的关系得出答案.
【详解】
解:∵OABC为平行四边形,OA=OC=OB,
∴四边形OABC为菱形,∠AOB=60°,
∵OD⊥AB,
∴∠BOD=30°,
∴∠BAD=30°÷2=15°.
故答案为:15.
【点睛】
本题主要考查的是圆的基本性质问题,属于基础题型.根据题意得出四边形OABC为菱形是解题的关键.
15、 (3,1)
【解析】
分析:已知抛物线解析式为顶点式,可直接写出顶点坐标.
详解:∵y=(x﹣3)2+1为抛物线的顶点式,根据顶点式的坐标特点可知,抛物线的顶点坐标为(3,1).故答案为(3,1).
点睛:主要考查了抛物线顶点式的运用.
16、﹣2≤x<
【解析】
根据解不等式的步骤从而得到答案.
【详解】
,
解不等式①可得:x≥-2,
解不等式②可得:x<,
故答案为-2≤x<.
【点睛】
本题主要考查了解不等式,解本题的要点在于分别求解①,②不等式,从而得到答案.
17、
【解析】
此题考查了二次函数的最值,勾股定理,等腰三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.
【详解】
过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,则BF+CM是这两个二次函数的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE= ,设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出= ,代入求出BF和CM,相加即可求出答案.
过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,
∵BF⊥OA,DE⊥OA,CM⊥OA,
∴BF∥DE∥CM.
∵OD=AD=3,DE⊥OA,
∴OE=EA= OA=2,
由勾股定理得:DE= =5,设P(2x,0),根据二次函数的对称性得出OF=PF=x,
∵BF∥DE∥CM,
∴△OBF∽△ODE,△ACM∽△ADE,
∴,
∵AM=PM= (OA-OP)= (4-2x)=2-x,
即,
解得:
∴BF+CM= .
故答案为.
【点睛】
考核知识点:二次函数综合题.熟记性质,数形结合是关键.
三、解答题(共7小题,满分69分)
18、 (1)证明见解析
(2)BC=
【解析】
(1)AB是⊙O的直径,得∠ADB=90°,从而得出∠BAD=∠DBC,即∠ABC=90°,即可证明BC是⊙O的切线;
(2)可证明△ABC∽△BDC,则,即可得出BC=.
【详解】
(1)∵AB是⊙O的切直径,
∴∠ADB=90°,
又∵∠BAD=∠BED,∠BED=∠DBC,
∴∠BAD=∠DBC,
∴∠BAD+∠ABD=∠DBC+∠ABD=90°,
∴∠ABC=90°,
∴BC是⊙O的切线;
(2)解:∵∠BAD=∠DBC,∠C=∠C,
∴△ABC∽△BDC,
∴,即BC2=AC•CD=(AD+CD)•CD=10,
∴BC=.
考点:1.切线的判定;2.相似三角形的判定和性质.
19、(1)2018至2020年寝室数量的年平均增长率为37.5%;(2)该校的寝室建成后最多可供1名师生住宿.
【解析】
(1)设2018至2020年寝室数量的年平均增长率为x,根据2018及2020年寝室数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
(2)设双人间有y间,则四人间有5y间,单人间有(121-6y)间,可容纳人数为w人,由单人间的数量在20至30之间(包括20和30),即可得出关于y的一元一次不等式组,解之即可得出y的取值范围,再根据可住师生数=寝室数×每间寝室可住人数,可找出w关于y的函数关系式,利用一次函数的性质即可解决最值问题.
【详解】
(1)解:设2018至2020年寝室数量的年平均增长率为x,
根据题意得:64(1+x)2=121,
解得:x1=0.375=37.5%,x2=﹣2.375(不合题意,舍去).
答:2018至2020年寝室数量的年平均增长率为37.5%.
(2)解:设双人间有y间,可容纳人数为w人,则四人间有5y间,单人间有(121﹣6y)间,
∵单人间的数量在20至30之间(包括20和30),
∴ ,
解得:15 ≤y≤16 .
根据题意得:w=2y+20y+121﹣6y=16y+121,
∴当y=16时,16y+121取得最大值为1.
答:该校的寝室建成后最多可供1名师生住宿.
【点睛】
本题考查了一元二次方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量之间的关系,找出w关于y的函数关系式.
20、11.9米
【解析】
先根据锐角三角函数的定义求出AC的长,再根据AB=AC+DE即可得出结论
【详解】
∵BD=CE=6m,∠AEC=60°,
∴AC=CE•tan60°=6×=6≈6×1.732≈10.4m,
∴AB=AC+DE=10.4+1.5=11.9m.
答:旗杆AB的高度是11.9米.
21、0
【解析】
本题涉及负指数幂、二次根式化简和绝对值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【详解】
原式.
【点睛】
本题主要考查负指数幂、二次根式化简和绝对值,熟悉掌握是关键.
22、(1)x≥﹣1;(2)a是不等式的解.
【解析】
(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.
(2)根据不等式的解的定义求解可得
【详解】
解:(1)去分母得:2﹣x≤3(2+x),
去括号得:2﹣x≤6+3x,
移项、合并同类项得:﹣4x≤4,
系数化为1得:x≥﹣1.
(2)∵a>2,不等式的解集为x≥﹣1,而2>﹣1,
∴a是不等式的解.
【点睛】
本题考查了解一元一次不等式,掌握解一元一次不等式的步骤是解题的关键
23、
【解析】
根据分式的运算法则即可求出答案.
【详解】
原式,
,
.
当时,原式
【点睛】
本题考查的知识点是分式的化简求值,解题关键是化简成最简再代入计算.
24、(1),;(2)证明见解析.
【解析】
试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.
(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.
试题解析:(1)设方程的另一根为x1,
∵该方程的一个根为1,∴.解得.
∴a的值为,该方程的另一根为.
(2)∵,
∴不论a取何实数,该方程都有两个不相等的实数根.
考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.
山东省淄博沂源县联考2021-2022学年中考数学猜题卷含解析: 这是一份山东省淄博沂源县联考2021-2022学年中考数学猜题卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2021-2022学年山东省临沂郯城县联考中考试题猜想数学试卷含解析: 这是一份2021-2022学年山东省临沂郯城县联考中考试题猜想数学试卷含解析,共20页。试卷主要包含了估计5﹣的值应在等内容,欢迎下载使用。
2021-2022学年山东省淄博市周村区萌水中学中考联考数学试卷含解析: 这是一份2021-2022学年山东省淄博市周村区萌水中学中考联考数学试卷含解析,共17页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。