|试卷下载
搜索
    上传资料 赚现金
    江苏省江都区六校2021-2022学年中考试题猜想数学试卷含解析
    立即下载
    加入资料篮
    江苏省江都区六校2021-2022学年中考试题猜想数学试卷含解析01
    江苏省江都区六校2021-2022学年中考试题猜想数学试卷含解析02
    江苏省江都区六校2021-2022学年中考试题猜想数学试卷含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省江都区六校2021-2022学年中考试题猜想数学试卷含解析

    展开
    这是一份江苏省江都区六校2021-2022学年中考试题猜想数学试卷含解析,共19页。试卷主要包含了下列计算正确的是,计算等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图是由五个相同的小立方块搭成的几何体,则它的俯视图是(  )

    A. B. C. D.
    2.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是( )

    A.0.1 B.0.2
    C.0.3 D.0.4
    3.一个半径为24的扇形的弧长等于20π,则这个扇形的圆心角是(  )
    A.120° B.135° C.150° D.165°
    4.在如图所示的计算程序中,y与x之间的函数关系所对应的图象应为( )

    A. B. C. D.
    5.反比例函数y=(a>0,a为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC⊥x轴于点C,交y=的图象于点A;MD⊥y轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:
    ①S△ODB=S△OCA;
    ②四边形OAMB的面积不变;
    ③当点A是MC的中点时,则点B是MD的中点.
    其中正确结论的个数是( )

    A.0 B.1 C.2 D.3
    6.对于任意实数k,关于x的方程的根的情况为
    A.有两个相等的实数根 B.没有实数根
    C.有两个不相等的实数根 D.无法确定
    7.下列计算正确的是(  )
    A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2
    C.(a+b)2=a2+b2 D.(a﹣b)2=a2﹣2ab+b2
    8.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过的集中药物喷洒,再封闭宿舍,然后打开门窗进行通风,室内每立方米空气中含药量与药物在空气中的持续时间之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )

    A.经过集中喷洒药物,室内空气中的含药量最高达到
    B.室内空气中的含药量不低于的持续时间达到了
    C.当室内空气中的含药量不低于且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效
    D.当室内空气中的含药量低于时,对人体才是安全的,所以从室内空气中的含药量达到开始,需经过后,学生才能进入室内
    9.2017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为(  )
    A.280×103 B.28×104 C.2.8×105 D.0.28×106
    10.计算(﹣3)﹣(﹣6)的结果等于(  )
    A.3 B.﹣3 C.9 D.18
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,矩形OABC的两边落在坐标轴上,反比例函数y=的图象在第一象限的分支过AB的中点D交OB于点E,连接EC,若△OEC的面积为12,则k=_____.

    12.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB与CD相交于点P,则tan∠APD的值为______.

    13.已知一组数据-3,x,-2, 3,1,6的众数为3,则这组数据的中位数为______.
    14.如图所示,在长为10m、宽为8m的长方形空地上,沿平行于各边的方向分割出三个全等的小长方形花圃则其中一个小长方形花圃的周长是______m.

    15.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点E,F分别在边AB,AC上,将△AEF沿直线EF翻折,点A落在点P处,且点P在直线BC上.则线段CP长的取值范围是____.

    16.如图,在矩形ABCD中,E是AD边的中点,,垂足为点F,连接DF,分析下列四个结论:∽;;;其中正确的结论有______.

    17.有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是_____.
    三、解答题(共7小题,满分69分)
    18.(10分)某商场甲、乙、丙三名业务员2018年前5个月的销售额(单位:万元)如下表:
    月份
    销售额
    人员
    第1月
    第2月
    第3月
    第4月
    第5月

    6
    9
    10
    8
    8

    5
    7
    8
    9
    9

    5
    9
    10
    5
    11
    (1)根据上表中的数据,将下表补充完整:
    统计值
    数值
    人员
    平均数(万元)
    众数(万元)
    中位数(万元)
    方差


    8
    8
    1.76

    7.6

    8
    2.24

    8
    5


    (2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.
    19.(5分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:每千克核桃应降价多少元?在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
    20.(8分)一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把1,3,6,10,15,21,…,称为“三角形数”;把1,4,9,16,25,…,称为“正方形数”.

    将三角形、正方形、五边形都整齐的由左到右填在所示表格里:
    三角形数
    1
    3
    6
    10
    15
    21
    a

    正方形数
    1
    4
    9
    16
    25
    b
    49

    五边形数
    1
    5
    12
    22
    C
    51
    70

    (1)按照规律,表格中a=___,b=___,c=___.
    (2)观察表中规律,第n个“正方形数”是________;若第n个“三角形数”是x,则用含x、n的代数式表示第n个“五边形数”是___________.
    21.(10分)先化简:,然后在不等式的非负整数解中选择一个适当的数代入求值.
    22.(10分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:
    命中环数
    6
    7
    8
    9
    10
    甲命中相应环数的次数
    0
    1
    3
    1
    0
    乙命中相应环数的次数
    2
    0
    0
    2
    1
    (1)根据上述信息可知:甲命中环数的中位数是_____环,乙命中环数的众数是______环;
    (2)试通过计算说明甲、乙两人的成绩谁比较稳定?
    (3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小.(填“变大”、“变小”或“不变”)
    23.(12分)画出二次函数y=(x﹣1)2的图象.
    24.(14分)如图,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圆,过点C作⊙O的切线交BA的延长线于点E,BD⊥CE于点D,连接DO交BC于点M.
    (1)求证:BC平分∠DBA;
    (2)若,求的值.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    试题分析:从上面看易得上面一层有3个正方形,下面中间有一个正方形.
    故选A.
    【考点】简单组合体的三视图.
    2、B
    【解析】
    ∵在5.5~6.5组别的频数是8,总数是40,
    ∴=0.1.
    故选B.
    3、C
    【解析】
    这个扇形的圆心角的度数为n°,根据弧长公式得到20π=,然后解方程即可.
    【详解】
    解:设这个扇形的圆心角的度数为n°,
    根据题意得20π=,
    解得n=150,
    即这个扇形的圆心角为150°.
    故选C.
    【点睛】
    本题考查了弧长公式:L=(n为扇形的圆心角的度数,R为扇形所在圆的半径).
    4、D
    【解析】
    先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.
    【详解】
    由题意知,函数关系为一次函数y=-1x+4,由k=-1<0可知,y随x的增大而减小,且当x=0时,y=4,
    当y=0时,x=1.
    故选D.
    【点睛】
    本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解.
    5、D
    【解析】
    根据反比例函数的性质和比例系数的几何意义逐项分析可得出解.
    【详解】
    ①由于A、B在同一反比例函数y=图象上,由反比例系数的几何意义可得S△ODB=S△OCA=1,正确;
    ②由于矩形OCMD、△ODB、△OCA为定值,则四边形MAOB的面积不会发生变化,正确;
    ③连接OM,点A是MC的中点,则S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面积相等,点B一定是MD的中点.正确;
    故答案选D.

    考点:反比例系数的几何意义.
    6、C
    【解析】
    判断一元二次方程的根的情况,只要看根的判别式的值的符号即可:
    ∵a=1,b=,c=,
    ∴.
    ∴此方程有两个不相等的实数根.故选C.
    7、D
    【解析】
    A、原式=a2﹣4,不符合题意;
    B、原式=a2﹣a﹣2,不符合题意;
    C、原式=a2+b2+2ab,不符合题意;
    D、原式=a2﹣2ab+b2,符合题意,
    故选D
    8、C
    【解析】
    利用图中信息一一判断即可.
    【详解】
    解: A、正确.不符合题意.
    B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;
    C、y=5时,x=2.5或24,24-2.5=21.5<35,故本选项错误,符合题意;
    D、正确.不符合题意,
    故选C.
    【点睛】
    本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.
    9、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    将280000用科学记数法表示为2.8×1.故选C.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    10、A
    【解析】
    原式=−3+6=3,
    故选A

    二、填空题(共7小题,每小题3分,满分21分)
    11、12.
    【解析】
    设AD=a,则AB=OC=2a,根据点D在反比例函数y=的图象上,可得D点的坐标为(a,),所以OA=;过点E 作EN⊥OC于点N,交AB于点M,则OA=MN=,已知△OEC的面积为12,OC=2a,根据三角形的面积公式求得EN=,即可求得EM=;设ON=x,则NC=BM=2a-x,证明△BME∽△ONE,根据相似三角形的性质求得x=,即可得点E的坐标为(,),根据点E在在反比例函数y=的图象上,可得·=k,解方程求得k值即可.
    【详解】
    设AD=a,则AB=OC=2a,
    ∵点D在反比例函数y=的图象上,
    ∴D(a,),
    ∴OA=,
    过点E 作EN⊥OC于点N,交AB于点M,则OA=MN=,

    ∵△OEC的面积为12,OC=2a,
    ∴EN=,
    ∴EM=MN-EN=-=;
    设ON=x,则NC=BM=2a-x,
    ∵AB∥OC,
    ∴△BME∽△ONE,
    ∴,
    即,
    解得x=,
    ∴E(,),
    ∵点E在在反比例函数y=的图象上,
    ∴·=k,
    解得k=,
    ∵k>0,
    ∴k=12.
    故答案为:12.
    【点睛】
    本题是反比例函数与几何的综合题,求得点E的坐标为(,)是解决问题的关键.
    12、1
    【解析】
    首先连接BE,由题意易得BF=CF,△ACP∽△BDP,然后由相似三角形的对应边成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:1,在Rt△PBF中,即可求得tan∠BPF的值,继而求得答案.
    【详解】
    如图:

    连接BE,
    ∵四边形BCED是正方形,
    ∴DF=CF=CD,BF=BE,CD=BE,BE⊥CD,
    ∴BF=CF,
    根据题意得:AC∥BD,
    ∴△ACP∽△BDP,
    ∴DP:CP=BD:AC=1:3,
    ∴DP:DF=1:1,
    ∴DP=PF=CF=BF,
    在Rt△PBF中,tan∠BPF==1,
    ∵∠APD=∠BPF,
    ∴tan∠APD=1.
    故答案为:1
    【点睛】
    此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.
    13、
    【解析】
    分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
    详解:∵-3,x,-1, 3,1,6的众数是3,
    ∴x=3,
    先对这组数据按从小到大的顺序重新排序-3、-1、1、3、3、6位于最中间的数是1,3,
    ∴这组数的中位数是=1.
    故答案为: 1.
    点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
    14、12
    【解析】
    由图形可看出:小矩形的2个长+一个宽=10m,小矩形的2个宽+一个长=8m,设出长和宽,列出方程组解之即可求得答案.
    【详解】
    解:设小长方形花圃的长为xm,宽为ym,由题意得,解得,所以其中一个小长方形花圃的周长是.
    【点睛】
    此题主要考查了二元一次方程组的应用,解题的关键是:数形结合,弄懂题意,找出等量关系,列出方程组.本题也可以让列出的两个方程相加,得3(x+y)=18,于是x+y=6,所以周长即为2(x+y)=12,问题得解.这种思路用了整体的数学思想,显得较为简捷.
    15、
    【解析】
    根据点E、F在边AB、AC上,可知当点E与点B重合时,CP有最小值,当点F与点C重合时CP有最大值,根据分析画出符合条件的图形即可得.
    【详解】
    如图,当点E与点B重合时,CP的值最小,

    此时BP=AB=3,所以PC=BC-BP=4-3=1,
    如图,当点F与点C重合时,CP的值最大,

    此时CP=AC,
    Rt△ABC中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP的最大值为5,
    所以线段CP长的取值范围是1≤CP≤5,
    故答案为1≤CP≤5.
    【点睛】
    本题考查了折叠问题,能根据点E、F分别在线段AB、AC上,点P在直线BC上确定出点E、F位于什么位置时PC有最大(小)值是解题的关键.
    16、
    【解析】
    ①证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;
    ②由AD∥BC,推出△AEF∽△CBF,得到,由AE=AD=BC,得到,即CF=2AF;
    ③作DM∥EB交BC于M,交AC于N,证明DM垂直平分CF,即可证明;
    ④设AE=a,AB=b,则AD=2a,根据△BAE∽△ADC,得到,即b=a,可得tan∠CAD=.
    【详解】
    如图,过D作DM∥BE交AC于N,
    ∵四边形ABCD是矩形,
    ∴AD∥BC,∠ABC=90°,AD=BC,
    ∵BE⊥AC于点F,
    ∴∠EAC=∠ACB,∠ABC=∠AFE=90°,
    ∴△AEF∽△CAB,故①正确;
    ∵AD∥BC,
    ∴△AEF∽△CBF,
    ∴,
    ∵AE=AD=BC,
    ∴,即CF=2AF,
    ∴CF=2AF,故②正确;
    作DM∥EB交BC于M,交AC于N,

    ∵DE∥BM,BE∥DM,
    ∴四边形BMDE是平行四边形,
    ∴BM=DE=BC,
    ∴BM=CM,
    ∴CN=NF,
    ∵BE⊥AC于点F,DM∥BE,
    ∴DN⊥CF,
    ∴DM垂直平分CF,
    ∴DF=DC,故③正确;
    设AE=a,AB=b,则AD=2a,
    由△BAE∽△ADC,
    ∴,即b=a,
    ∴tan∠CAD=,故④错误;
    故答案为:①②③.
    【点睛】
    本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.
    17、
    【解析】
    分析:直接利用中心对称图形的性质结合概率求法直接得出答案.
    详解:∵等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,
    ∴从中随机抽取一张,卡片上的图形是中心对称图形的概率是:.
    故答案为.
    点睛:此题主要考查了中心对称图形的性质和概率求法,正确把握中心对称图形的定义是解题关键.

    三、解答题(共7小题,满分69分)
    18、(1)8.2;9;9;6.4;(2)赞同甲的说法.理由见解析.
    【解析】
    (1)利用平均数、众数、中位数的定义和方差的计算公式求解;
    (2)利用甲的平均数大得到总营业额高,方差小,营业额稳定进行判断.
    【详解】
    (1)甲的平均数;
    乙的众数为9;
    丙的中位数为9,
    丙的方差;
    故答案为8.2;9;9;6.4;
    (2)赞同甲的说法.理由是:甲的平均数高,总营业额比乙、丙都高,每月的营业额比较稳定.
    【点睛】
    本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小.记住方差的计算公式.也考查了平均数、众数和中位数.
    19、(1)4元或6元;(2)九折.
    【解析】
    解:(1)设每千克核桃应降价x元.
    根据题意,得(60﹣x﹣40)(100+×20)=2240,
    化简,得 x2﹣10x+24=0,解得x1=4,x2=6.
    答:每千克核桃应降价4元或6元.
    (2)由(1)可知每千克核桃可降价4元或6元.
    ∵要尽可能让利于顾客,∴每千克核桃应降价6元.
    此时,售价为:60﹣6=54(元),.
    答:该店应按原售价的九折出售.
    20、1 2 3 n2 n2 +x-n
    【解析】
    分析:(1)、首先根据题意得出前6个“三角形数”分别是多少,从而得出a的值;前5个“正方形数”分别是多少,从而得出b的值;前4个“正方形数”分别是多少,从而得出c的值;(2)、根据前面得出的一般性得出答案.
    详解:(1)∵前6个“三角形数”分别是:1=、3=、6=、10=、15=、21=,
    ∴第n个“三角形数”是, ∴a=7×82=17×82=1.
    ∵前5个“正方形数”分别是: 1=12,4=22,9=32,16=42,25=52,
    ∴第n个“正方形数”是n2, ∴b=62=2.
    ∵前4个“正方形数”分别是:1=,5=,12=,22=,
    ∴第n个“五边形数”是n(3n−1)2n(3n−1)2, ∴c==3.
    (2)第n个“正方形数”是n2;1+1-1=1,3+4-5=2,6+9-12=3,10+16-22=4,…,
    ∴第n个“五边形数”是n2+x-n.
    点睛:此题主要考查了图形的变化类问题,要熟练掌握,解答此类问题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
    21、;2.
    【解析】
    先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.
    【详解】
    解:原式=
    =
    =
    的非负整数解有:2,1,0,
    其中当x取2或1时分母等于0,不符合条件,故x只能取0
    ∴将x=0代入得:原式=2
    【点睛】
    本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.
    22、(1)8, 6和9;
    (2)甲的成绩比较稳定;(3)变小
    【解析】
    (1)根据众数、中位数的定义求解即可;
    (2)根据平均数的定义先求出甲和乙的平均数,再根据方差公式求出甲和乙的方差,然后进行比较,即可得出答案;
    (3)根据方差公式进行求解即可.
    【详解】
    解:(1)把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8;
    在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9;
    故答案为8,6和9;
    (2)甲的平均数是:(7+8+8+8+9)÷5=8,
    则甲的方差是: [(7-8)2+3(8-8)2+(9-8)2]=0.4,
    乙的平均数是:(6+6+9+9+10)÷5=8,
    则甲的方差是: [2(6-8)2+2(9-8)2+(10-8)2]=2.8,
    所以甲的成绩比较稳定;
    (3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.
    故答案为变小.
    【点睛】
    本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=[(x1-)2+(x2-)2+…+(xn-)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数、中位数和众数.
    23、见解析
    【解析】
    首先可得顶点坐标为(1,0),然后利用对称性列表,再描点,连线,即可作出该函数的图象.
    【详解】
    列表得:
    x

    ﹣1
    0
    1
    2
    3

    y

    4
    1
    0
    1
    4

    如图:

    【点睛】
    此题考查了二次函数的图象.注意确定此二次函数的顶点坐标是关键.
    24、 (1)证明见解析;(2)
    【解析】
    分析:
    (1)如下图,连接OC,由已知易得OC⊥DE,结合BD⊥DE可得OC∥BD,从而可得∠1=∠2,结合由OB=OC所得的∠1=∠3,即可得到∠2=∠3,从而可得BC平分∠DBA;
    (2)由OC∥BD可得△EBD∽△EOC和△DBM∽△OCM,由根据相似三角形的性质可得得,由,设EA=2k,AO=3k可得OC=OA=OB=3k,由此即可得到.
    详解:
    (1)证明:连结OC,
    ∵DE与⊙O相切于点C,
    ∴OC⊥DE.
    ∵BD⊥DE,
    ∴OC∥BD. .
    ∴∠1=∠2,
    ∵OB=OC,
    ∴∠1=∠3,
    ∴∠2=∠3,
    即BC平分∠DBA. .

    (2)∵OC∥BD,
    ∴△EBD∽△EOC,△DBM∽△OCM,.
    ∴,
    ∴,
    ∵,设EA=2k,AO=3k,
    ∴OC=OA=OB=3k.
    ∴.
    点睛:(1)作出如图所示的辅助线,由“切线的性质”得到OC⊥DE结合BD⊥DE得到OC∥BD是解答第1小题的关键;(2)解答第2小题的关键是由OC∥BD得到△EBD∽△EOC和△DBM∽△OCM这样利用相似三角形的性质结合已知条件即可求得所求值了.

    相关试卷

    江苏省镇江丹徒区七校联考2021-2022学年中考试题猜想数学试卷含解析: 这是一份江苏省镇江丹徒区七校联考2021-2022学年中考试题猜想数学试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,下列运算正确的是等内容,欢迎下载使用。

    江苏省江都区六校2021-2022学年十校联考最后数学试题含解析: 这是一份江苏省江都区六校2021-2022学年十校联考最后数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,一、单选题,tan60°的值是等内容,欢迎下载使用。

    江苏省江都区国际校2021-2022学年中考数学模拟试题含解析: 这是一份江苏省江都区国际校2021-2022学年中考数学模拟试题含解析,共18页。试卷主要包含了计算3a2-a2的结果是,下列运算正确的是,如图所示的几何体,它的左视图是,的算术平方根为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map