山东省菏泽市单县2021-2022学年中考数学最后一模试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为( )
A.1 B.3 C.5 D.1或5
2.下面的图形是轴对称图形,又是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
3.下列叙述,错误的是( )
A.对角线互相垂直且相等的平行四边形是正方形
B.对角线互相垂直平分的四边形是菱形
C.对角线互相平分的四边形是平行四边形
D.对角线相等的四边形是矩形
4.某同学将自己7次体育测试成绩(单位:分)绘制成折线统计图,则该同学7次测试成绩的众数和中位数分别是( )
A.50和48 B.50和47 C.48和48 D.48和43
5.如图是二次函数的部分图象,由图象可知不等式的解集是( )
A. B. C.且 D.x<-1或x>5
6.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( )
A. B. C. D.
7.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为( )
A.1.8×105 B.1.8×104 C.0.18×106 D.18×104
8.如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )
A. B. C. D.
9.如图,AB为⊙O的直径,C、D为⊙O上的点,若AC=CD=DB,则cos∠CAD =( )
A. B. C. D.
10.分式有意义,则x的取值范围是( )
A.x≠2 B.x=0 C.x≠﹣2 D.x=﹣7
二、填空题(共7小题,每小题3分,满分21分)
11.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.
12.等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为_____秒.
13.因式分解:9x﹣x2=_____.
14.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,若静水时船速为26km/h,水速为2km/h,则A港和B港相距_____km.
15.如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60°方向上,继续向东航行10海里到达点B处,测得小岛C在轮船的北偏东15°方向上,此时轮船与小岛C的距离为_________海里.(结果保留根号)
16.如果x3nym+4与﹣3x6y2n是同类项,那么mn的值为_____.
17.计算(+)(-)的结果等于________.
三、解答题(共7小题,满分69分)
18.(10分)为响应“植树造林、造福后人”的号召,某班组织部分同学义务植树棵,由于同学们的积极参与,实际参加的人数比原计划增加了,结果每人比原计划少栽了棵,问实际有多少人参加了这次植树活动?
19.(5分)小明对,,,四个中小型超市的女工人数进行了统计,并绘制了下面的统计图表,已知超市有女工20人.所有超市女工占比统计表
超市 | ||||
女工人数占比 | 62.5% | 62.5% | 50% | 75% |
超市共有员工多少人?超市有女工多少人?若从这些女工中随机选出一个,求正好是超市的概率;现在超市又招进男、女员工各1人,超市女工占比还是75%吗?甲同学认为是,乙同学认为不是.你认为谁说的对,并说明理由.
20.(8分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高 米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73,≈3.16)
21.(10分)现在,某商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?小张按合算的方案,把这台冰箱买下,如果某商场还能盈利25%,这台冰箱的进价是多少元?
22.(10分)在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,连接AD,求∠ADB的度数.(不必解答)
小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图1),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.
请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是 三角形;∠ADB的度数为 .在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=1.请直接写出线段BE的长为 .
23.(12分)随着社会经济的发展,汽车逐渐走入平常百姓家.某数学兴趣小组随机抽取了我市某单位部分职工进行调查,对职工购车情况分4类(A:车价40万元以上;B:车价在20—40万元;C:车价在20万元以下;D:暂时未购车)进行了统计,并将统计结果绘制成以下条形统计图和扇形统计图.请结合图中信息解答下列问题:
(1)调查样本人数为__________,样本中B类人数百分比是_______,其所在扇形统计图中的圆心角度数是________;
(2)把条形统计图补充完整;
(3)该单位甲、乙两个科室中未购车人数分别为2人和3人,现从中选2人去参观车展,用列表或画树状图的方法,求选出的2人来自不同科室的概率.
24.(14分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.求反比例函数的表达式在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标求△PAB的面积.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.
【详解】
当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,
当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,
故选D.
【点睛】
本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.
2、B
【解析】
根据轴对称图形和中心对称图形的定义对各个图形进行逐一分析即可.
【详解】
解:第一个图形是轴对称图形,但不是中心对称图形;
第二个图形是中心对称图形,但不是轴对称图形;
第三个图形既是轴对称图形,又是中心对称图形;
第四个图形即是轴对称图形,又是中心对称图形;
∴既是轴对称图形,又是中心对称图形的有两个,
故选:B.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.
3、D
【解析】
【分析】根据正方形的判定、平行四边形的判定、菱形的判定和矩形的判定定理对选项逐一进行分析,即可判断出答案.
【详解】A. 对角线互相垂直且相等的平行四边形是正方形,正确,不符合题意;
B. 对角线互相垂直平分的四边形是菱形,正确,不符合题意;
C. 对角线互相平分的四边形是平行四边形,正确,不符合题意;
D. 对角线相等的平行四边形是矩形,故D选项错误,符合题意,
故选D.
【点睛】本题考查了正方形的判定、平行四边形的判定、菱形的判定和矩形的判定等,熟练掌握相关判定定理是解答此类问题的关键.
4、A
【解析】
由折线统计图,可得该同学7次体育测试成绩,进而求出众数和中位数即可.
【详解】
由折线统计图,得:42,43,47,48,49,50,50,
7次测试成绩的众数为50,中位数为48,
故选:A.
【点睛】
本题考查了众数和中位数,解题的关键是利用折线统计图获取有效的信息.
5、D
【解析】
利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出的解集:
由图象得:对称轴是x=2,其中一个点的坐标为(1,0),
∴图象与x轴的另一个交点坐标为(-1,0).
由图象可知:的解集即是y<0的解集,
∴x<-1或x>1.故选D.
6、C
【解析】
画树状图得:
∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,
∴两次抽取的卡片上的数字之积为正偶数的概率是:.
故选C.
【点睛】运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.
7、A
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
180000=1.8×105,
故选A.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
8、B
【解析】
根据俯视图是从上往下看的图形解答即可.
【详解】
从上往下看到的图形是:
.
故选B.
【点睛】
本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
9、D
【解析】
根据圆心角,弧,弦的关系定理可以得出===,根据圆心角和圆周角的关键即可求出的度数,进而求出它的余弦值.
【详解】
解:
===,
故选D.
【点睛】
本题考查圆心角,弧,弦,圆周角的关系,熟记特殊角的三角函数值是解题的关键.
10、A
【解析】
直接利用分式有意义则分母不为零进而得出答案.
【详解】
解:分式有意义,
则x﹣1≠0,
解得:x≠1.
故选:A.
【点睛】
此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.当分母不等于零时,分式有意义;当分母等于零时,分式无意义.分式是否有意义与分子的取值无关.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
画出图形,设菱形的边长为x,根据勾股定理求出周长即可.
【详解】
当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,
在Rt△ABC中,
由勾股定理:x2=(8-x)2+22,
解得:x=,
∴4x=1,
即菱形的最大周长为1cm.
故答案是:1.
【点睛】
解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.
12、7秒或25秒.
【解析】
考点:勾股定理;等腰三角形的性质.
专题:动点型;分类讨论.
分析:根据等腰三角形三线合一性质可得到BD的长,由勾股定理可求得AD的长,再分两种情况进行分析:①PA⊥AC②PA⊥AB,从而可得到运动的时间.
解答:解:如图,作AD⊥BC,交BC于点D,
∵BC=8cm,
∴BD=CD=BC=4cm,
∴AD==3,
分两种情况:当点P运动t秒后有PA⊥AC时,
∵AP2=PD2+AD2=PC2-AC2,∴PD2+AD2=PC2-AC2,
∴PD2+32=(PD+4)2-52∴PD=2.25,
∴BP=4-2.25=1.75=0.25t,
∴t=7秒,
当点P运动t秒后有PA⊥AB时,同理可证得PD=2.25,
∴BP=4+2.25=6.25=0.25t,
∴t=25秒,
∴点P运动的时间为7秒或25秒.
点评:本题利用了等腰三角形的性质和勾股定理求解.
13、x(9﹣x)
【解析】
试题解析:
故答案为
点睛:常见的因式分解的方法:提取公因式法,公式法,十字相乘法.
14、1.
【解析】
根据逆流速度=静水速度-水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解问题可解.
【详解】
解:设A港与B港相距xkm,
根据题意得:
,
解得:x=1,
则A港与B港相距1km.
故答案为:1.
【点睛】
此题考查了分式方程的应用题,解答关键是在顺流、逆流过程中找出等量关系构造方程.
15、5
【解析】
如图,作BH⊥AC于H.在Rt△ABH中,求出BH,再在Rt△BCH中,利用等腰直角三角形的性质求出BC即可.
【详解】
如图,作BH⊥AC于H.
在Rt△ABH中,∵AB=10海里,∠BAH=30°,
∴∠ABH=60°,BH=AB=5(海里),
在Rt△BCH中,∵∠CBH=∠C=45°,BH=5(海里),
∴BH=CH=5海里,
∴CB=5(海里).
故答案为:5.
【点睛】
本题考查了解直角三角形的应用-方向角问题,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题.
16、0
【解析】
根据同类项的特点,可知3n=6,解得n=2,m+4=2n,解得m=0,所以mn=0.
故答案为0
点睛:此题主要考查了同类项,解题关键是会判断同类项,注意:同类项中含有相同的字母,相同字母的指数相同.
17、2
【解析】
利用平方差公式进行计算即可得.
【详解】
原式=
=5-3=2,
故答案为:2.
【点睛】
本题考查了二次根式的混合运算,掌握平方差公式结构特征是解本题的关键.
三、解答题(共7小题,满分69分)
18、人
【解析】
解:设原计划有x人参加了这次植树活动
依题意得:
解得 x=30人
经检验x=30是原方程式的根
实际参加了这次植树活动1.5x=45人
答实际有45人参加了这次植树活动.
19、(1)32(人),25(人);(2);(3)乙同学,见解析.
【解析】
(1)用A超市有女工人数除以女工人数占比,可求A超市共有员工多少人;先求出D超市女工所占圆心角度数,进一步得到四个中小型超市的女工人数比,从而求得B超市有女工多少人;
(2)先求出C超市有女工人数,进一步得到四个中小型超市共有女工人数,再根据概率的定义即可求解;
(3)先求出D超市有女工人数、共有员工多少人,再得到D超市又招进男、女员工各1人,D超市有女工人数、共有员工多少人,再根据概率的定义即可求解.
【详解】
解:(1)A超市共有员工:20÷62.5%=32(人),
∵360°-80°-100°-120°=60°,
∴四个超市女工人数的比为:80:100:120:60=4:5:6:3,
∴B超市有女工:20×=25(人);
(2)C超市有女工:20×=30(人).
四个超市共有女工:20×=90(人).
从这些女工中随机选出一个,正好是C超市的概率为=.
(3)乙同学.
理由:D超市有女工20×=15(人),共有员工15÷75%=20(人),
再招进男、女员工各1人,共有员工22人,其中女工是16人,女工占比为=≠75%.
【点睛】
本题考查了统计表与扇形统计图的综合,以及概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.
20、2.1.
【解析】
据题意得出tanB = , 即可得出tanA, 在Rt△ADE中, 根据勾股定理可求得DE, 即可得出∠FCE的正切值, 再在Rt△CEF中, 设EF=x,即可求出x, 从而得出CF=1x的长.
【详解】
解:
据题意得tanB=,
∵MN∥AD,
∴∠A=∠B,
∴tanA=,
∵DE⊥AD,
∴在Rt△ADE中,tanA=,
∵AD=9,
∴DE=1,
又∵DC=0.5,
∴CE=2.5,
∵CF⊥AB,
∴∠FCE+∠CEF=90°,
∵DE⊥AD,
∴∠A+∠CEF=90°,
∴∠A=∠FCE,
∴tan∠FCE=
在Rt△CEF中,CE2=EF2+CF2
设EF=x,CF=1x(x>0),CE=2.5,
代入得()2=x2+(1x)2
解得x=(如果前面没有“设x>0”,则此处应“x=±,舍负”),
∴CF=1x=≈2.1,
∴该停车库限高2.1米.
【点睛】
点评: 本题考查了解直角三角形的应用, 坡面坡角问题和勾股定理, 解题的关键是坡度等于坡角的正切值.
21、(1)当顾客消费等于1500元时买卡与不买卡花钱相等;当顾客消费大于1500元时买卡合算;(2)小张买卡合算,能节省400元钱;(3)这台冰箱的进价是2480元.
【解析】
(1)设顾客购买x元金额的商品时,买卡与不买卡花钱相等,根据花300元买这种卡后,凭卡可在这家商场按标价的8折购物,列出方程,解方程即可;根据x的值说明在什么情况下购物合算
(2)根据(1)中所求即可得出怎样购买合算,以及节省的钱数;
(3)设进价为y元,根据售价-进价=利润,则可得出方程即可.
【详解】
解:设顾客购买x元金额的商品时,买卡与不买卡花钱相等.
根据题意,得300+0.8x=x,
解得x=1500,
所以当顾客消费等于1500元时,买卡与不买卡花钱相等;
当顾客消费少于1500元时,300+0.8xx不买卡合算;
当顾客消费大于1500元时,300+0.8xx买卡合算;
(2)小张买卡合算,
3500﹣(300+3500×0.8)=400,
所以,小张能节省400元钱;
(3)设进价为y元,根据题意,得
(300+3500×0.8)﹣y=25%y,
解得 y=2480
答:这台冰箱的进价是2480元.
【点睛】
此题主要考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.
22、(1)①△D′BC是等边三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣
【解析】
(1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等边三角形;
②借助①的结论,再判断出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解决问题.
(1)当60°<α≤110°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1).
(3)第①种情况:当60°<α≤110°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.
【详解】
(1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,
∵AB=AC,∠BAC=90°,
∴∠ABC=45°,
∵∠DBC=30°,
∴∠ABD=∠ABC﹣∠DBC=15°,
在△ABD和△ABD′中,
∴△ABD≌△ABD′,
∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,
∴∠D′BC=∠ABD′+∠ABC=60°,
∵BD=BD′,BD=BC,
∴BD′=BC,
∴△D′BC是等边三角形,
②∵△D′BC是等边三角形,
∴D′B=D′C,∠BD′C=60°,
在△AD′B和△AD′C中,
∴△AD′B≌△AD′C,
∴∠AD′B=∠AD′C,
∴∠AD′B=∠BD′C=30°,
∴∠ADB=30°.
(1)∵∠DBC<∠ABC,
∴60°<α≤110°,
如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,
∵AB=AC,
∴∠ABC=∠ACB,
∵∠BAC=α,
∴∠ABC=(180°﹣α)=90°﹣α,
∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,
同(1)①可证△ABD≌△ABD′,
∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B
∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),
∵α+β=110°,
∴∠D′BC=60°,
由(1)②可知,△AD′B≌△AD′C,
∴∠AD′B=∠AD′C,
∴∠AD′B=∠BD′C=30°,
∴∠ADB=30°.
(3)第①情况:当60°<α<110°时,如图3﹣1,
由(1)知,∠ADB=30°,
作AE⊥BD,
在Rt△ADE中,∠ADB=30°,AD=1,
∴DE=,
∵△BCD'是等边三角形,
∴BD'=BC=7,
∴BD=BD'=7,
∴BE=BD﹣DE=7﹣;
第②情况:当0°<α<60°时,
如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.
同理可得:∠ABC=(180°﹣α)=90°﹣α,
∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),
同(1)①可证△ABD≌△ABD′,
∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,
∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),
∴D′B=D′C,∠BD′C=60°.
同(1)②可证△AD′B≌△AD′C,
∴∠AD′B=∠AD′C,
∵∠AD′B+∠AD′C+∠BD′C=360°,
∴∠ADB=∠AD′B=150°,
在Rt△ADE中,∠ADE=30°,AD=1,
∴DE=,
∴BE=BD+DE=7+,
故答案为:7+或7﹣.
【点睛】
此题是三角形综合题,主要考查全等三角形的判定和性质.等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
23、(1)50,20%,72°.
(2)图形见解析;
(3)选出的2人来自不同科室的概率=.
【解析】
试题分析:(1)根据调查样本人数=A类的人数除以对应的百分比.样本中B类人数百分比=B类人数除以总人数,B类人数所在扇形统计图中的圆心角度数=B类人数的百分比×360°.
(2)先求出样本中B类人数,再画图.
(3)画树状图并求出选出的2人来自不同科室的概率.
试题解析:(1)调查样本人数为4÷8%=50(人),
样本中B类人数百分比(50﹣4﹣28﹣8)÷50=20%,
B类人数所在扇形统计图中的圆心角度数是20%×360°=72°;
(2)如图,样本中B类人数=50﹣4﹣28﹣8=10(人)
;
(3)画树状图为:
共有20种可能的结果数,其中选出选出的2人来自不同科室占12种,
所以选出的2人来自不同科室的概率=.
考点:1.条形统计图2.扇形统计图3.列表法与树状图法.
24、(1)反比例函数的表达式y=,(2)点P坐标(,0), (3)S△PAB= 1.1.
【解析】
(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面积.
解:(1)把点A(1,a)代入一次函数y=﹣x+4,
得a=﹣1+4,
解得a=3,
∴A(1,3),
点A(1,3)代入反比例函数y=,
得k=3,
∴反比例函数的表达式y=,
(2)把B(3,b)代入y=得,b=1
∴点B坐标(3,1);
作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,
∴D(3,﹣1),
设直线AD的解析式为y=mx+n,
把A,D两点代入得,, 解得m=﹣2,n=1,
∴直线AD的解析式为y=﹣2x+1,
令y=0,得x=,
∴点P坐标(,0),
(3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.
点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.
2024年山东省菏泽市单县湖西学校中考数学一模试卷(含解析): 这是一份2024年山东省菏泽市单县湖西学校中考数学一模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年山东省菏泽市单县湖西学校中考数学一模试卷(含解析): 这是一份2024年山东省菏泽市单县湖西学校中考数学一模试卷(含解析),共33页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年山东省菏泽市单县中考数学二模试卷(含解析): 这是一份2023年山东省菏泽市单县中考数学二模试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。