|试卷下载
搜索
    上传资料 赚现金
    湖北省武汉青山区2021-2022学年中考数学五模试卷含解析
    立即下载
    加入资料篮
    湖北省武汉青山区2021-2022学年中考数学五模试卷含解析01
    湖北省武汉青山区2021-2022学年中考数学五模试卷含解析02
    湖北省武汉青山区2021-2022学年中考数学五模试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省武汉青山区2021-2022学年中考数学五模试卷含解析

    展开
    这是一份湖北省武汉青山区2021-2022学年中考数学五模试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,如图所示的几何体的左视图是,下列因式分解正确的是,已知等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.某中学篮球队12名队员的年龄如下表:
    年龄:(岁)
    13
    14
    15
    16
    人数
    1
    5
    4
    2
    关于这12名队员的年龄,下列说法错误的是( )
    A.众数是14岁 B.极差是3岁 C.中位数是14.5岁 D.平均数是14.8岁
    2.一元二次方程(x+3)(x-7)=0的两个根是
    A.x1=3,x2=-7 B.x1=3,x2=7
    C.x1=-3,x2=7 D.x1=-3,x2=-7
    3.若x=-2是关于x的一元二次方程x2+ax-a2=0的一个根,则a的值为( )
    A.-1或4 B.-1或-4
    C.1或-4 D.1或4
    4.如图所示的几何体的左视图是( )

    A. B. C. D.
    5.2017年,小榄镇GDP总量约31600000000元,数据31600000000科学记数法表示为(  )
    A.0.316×1010 B.0.316×1011 C.3.16×1010 D.3.16×1011
    6.如图,PA和PB是⊙O的切线,点A和B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是( )

    A.60° B.65° C.70° D.75°
    7.下列因式分解正确的是( )
    A.x2+9=(x+3)2 B.a2+2a+4=(a+2)2
    C.a3-4a2=a2(a-4) D.1-4x2=(1+4x)(1-4x)
    8.已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为(  )

    A.3:2 B.9:4 C.2:3 D.4:9
    9.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )
    A. B. C. D.
    10.如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分别是(  )

    A.(﹣2,4),(1,3) B.(﹣2,4),(2,3)
    C.(﹣3,4),(1,4) D.(﹣3,4),(1,3)
    11.下列命题中,真命题是(  )
    A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离
    B.如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切
    C.如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切
    D.如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离
    12.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是(  )

    A.①②③④ B.①④ C.②③④ D.①②③
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若分式方程的解为正数,则a的取值范围是______________.
    14.若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为______
    15.若一元二次方程有两个不相等的实数根,则k的取值范围是 .
    16.已知代数式2x﹣y的值是,则代数式﹣6x+3y﹣1的值是_____.
    17.如图,在矩形ABCD中,顺次连接矩形四边的中点得到四边形EFGH.若AB=8,AD=6,则四边形EFGH的周长等于__________.

    18.直线y=x与双曲线y=在第一象限的交点为(a,1),则k=_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.
    (1)求证:△BDE≌△BCE;
    (2)试判断四边形ABED的形状,并说明理由.

    20.(6分)绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:

    设销售员的月销售额为x(单位:万元)。销售部规定:当x<16时,为“不称职”,当 时为“基本称职”,当 时为“称职”,当 时为“优秀”.根据以上信息,解答下列问题: 补全折线统计图和扇形统计图; 求所有“称职”和“优秀”的销售员销售额的中位数和众数; 为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励。如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果去整数)?并简述其理由.
    21.(6分)海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.

    22.(8分)(1)计算:()﹣3×[﹣()3]﹣4cos30°+;
    (2)解方程:x(x﹣4)=2x﹣8
    23.(8分)某校为了创建书香校远,计划进一批图书,经了解.文学书的单价比科普书的单价少20元,用800元购进的文学书本数与用1200元购进的科普书本数相等.文学书和科普书的单价分别是多少元?该校计划用不超过5000元的费用购进一批文学书和科普书,问购进60本文学书后最多还能购进多少本科普书?
    24.(10分)已知,抛物线(为常数).

    (1)抛物线的顶点坐标为( , )(用含的代数式表示);
    (2)若抛物线经过点且与图象交点的纵坐标为3,请在图1中画出抛物线的简图,并求的函数表达式;
    (3)如图2,规矩的四条边分别平行于坐标轴,,若抛物线经过两点,且矩形在其对称轴的左侧,则对角线的最小值是 .
    25.(10分)某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台电冰箱的进价比每台空调的进价多300元,商场用9000元购进电冰箱的数量与用7200元购进空调数量相等.
    (1)求每台电冰箱与空调的进价分别是多少?
    (2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售利润为Y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16200元,请分析合理的方案共有多少种?
    (3)实际进货时,厂家对电冰箱出厂价下调K(0<K<150)元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案.
    26.(12分)对于平面直角坐标系xOy中的任意两点M,N,给出如下定义:点M与点N的“折线距离”为:.

    例如:若点M(-1,1),点N(2,-2),则点M与点N的“折线距离”为:.根据以上定义,解决下列问题:已知点P(3,-2).
    ①若点A(-2,-1),则d(P,A)= ;
    ②若点B(b,2),且d(P,B)=5,则b= ;
    ③已知点C(m,n)是直线上的一个动点,且d(P,C)<3,求m的取值范围.⊙F的半径为1,圆心F的坐标为(0,t),若⊙F上存在点E,使d(E,O)=2,直接写出t的取值范围.
    27.(12分)如图,在平行四边形ABCD中,连接AC,做△ABC的外接圆⊙O,延长EC交⊙O于点D,连接BD、AD,BC与AD交于点F分,∠ABC=∠ADB。
    (1)求证:AE是⊙O的切线;
    (2)若AE=12,CD=10,求⊙O的半径。




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    分别利用极差以及中位数和众数以及平均数的求法分别分析得出答案.
    解:由图表可得:14岁的有5人,故众数是14,故选项A正确,不合题意;
    极差是:16﹣13=3,故选项B正确,不合题意;
    中位数是:14.5,故选项C正确,不合题意;
    平均数是:(13+14×5+15×4+16×2)÷12≈14.5,故选项D错误,符合题意.
    故选D.
    “点睛”此题主要考查了极差以及中位数和众数以及平均数的求法,正确把握相关定义是解题关键.
    2、C
    【解析】
    根据因式分解法直接求解即可得.
    【详解】
    ∵(x+3)(x﹣7)=0,
    ∴x+3=0或x﹣7=0,
    ∴x1=﹣3,x2=7,
    故选C.
    【点睛】
    本题考查了解一元二次方程——因式分解法,根据方程的特点选择恰当的方法进行求解是解题的关键.
    3、C
    【解析】
    试题解析:∵x=-2是关于x的一元二次方程的一个根,
    ∴(-2)2+a×(-2)-a2=0,即a2+3a-2=0,
    整理,得(a+2)(a-1)=0,
    解得 a1=-2,a2=1.
    即a的值是1或-2.
    故选A.
    点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
    4、A
    【解析】
    本题考查的是三视图.左视图可以看到图形的排和每排上最多有几层.所以选择A.
    5、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    31600000000=3.16×1.故选:C.
    【点睛】
    本题考查科学记数法,解题的关键是掌握科学记数法的表示.
    6、C
    【解析】
    试题分析:连接OB,根据PA、PB为切线可得:∠OAP=∠OBP=90°,根据四边形AOBP的内角和定理可得∠AOB=140°,∵OC=OB,则∠C=∠OBC,根据∠AOB为△OBC的外角可得:∠ACB=140°÷2=70°.
    考点:切线的性质、三角形外角的性质、圆的基本性质.
    7、C
    【解析】
    试题分析:A、B无法进行因式分解;C正确;D、原式=(1+2x)(1-2x)
    故选C,考点:因式分解
    【详解】
    请在此输入详解!
    8、A
    【解析】
    试题解析:过点D作DE⊥AB于E,DF⊥AC于F.

    ∵AD为∠BAC的平分线,
    ∴DE=DF,又AB:AC=3:2,

    故选A.
    点睛:角平分线上的点到角两边的距离相等.
    9、D
    【解析】
    试题分析:列举出所有情况,看取出的两个都是黄色球的情况数占总情况数的多少即可.
    试题解析:画树状图如下:

    共有12种情况,取出2个都是黄色的情况数有6种,所以概率为.
    故选D.
    考点:列表法与树状法.
    10、A
    【解析】
    作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,由AAS证明△AOE≌△OCD,得出AE=OD,OE=CD,由点A的坐标是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.
    【详解】
    解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,则∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.
    ∵四边形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.
    ∵点A的坐标是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).
    同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).
    故选A.

    【点睛】
    本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.
    11、D
    【解析】
    根据两圆的位置关系、直线和圆的位置关系判断即可.
    【详解】
    A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离或内含,A是假命题;
    B.如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切或内切或相交,B是假命题;
    C.如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切或相交,C是假命题;
    D.如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离,D是真命题;
    故选:D.
    【点睛】
    本题考查了两圆的位置关系:设两圆半径分别为R、r,两圆圆心距为d,则当d>R+r时两圆外离;当d=R+r时两圆外切;当R-r<d<R+r(R≥r)时两圆相交;当d=R-r(R>r)时两圆内切;当0≤d<R-r(R>r)时两圆内含.
    12、D
    【解析】
    ∵在▱ABCD中,AO=AC,
    ∵点E是OA的中点,
    ∴AE=CE,
    ∵AD∥BC,
    ∴△AFE∽△CBE,
    ∴=,
    ∵AD=BC,
    ∴AF=AD,
    ∴;故①正确;
    ∵S△AEF=4, =()2=,
    ∴S△BCE=36;故②正确;
    ∵ =,
    ∴=,
    ∴S△ABE=12,故③正确;
    ∵BF不平行于CD,
    ∴△AEF与△ADC只有一个角相等,
    ∴△AEF与△ACD不一定相似,故④错误,故选D.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、a<8,且a≠1
    【解析】
    分式方程去分母得:x=2x-8+a,
    解得:x=8- a,
    根据题意得:8- a>2,8- a≠1,
    解得:a<8,且a≠1.
    故答案为:a<8,且a≠1.
    【点睛】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据分式方程解为正数求出a的范围即可.此题考查了分式方程的解,需注意在任何时候都要考虑分母不为2.
    14、
    【解析】
    【分析】根据反比例函数图象上点的横、纵坐标之积不变可得关于m的方程,解方程即可求得m的值,再由待定系数法即可求得反比例函数的解析式.
    【详解】设反比例函数解析式为y=,
    由题意得:m2=2m×(-1),
    解得:m=-2或m=0(不符题意,舍去),
    所以点A(-2,-2),点B(-4,1),
    所以k=4,
    所以反比例函数解析式为:y=,
    故答案为y=.
    【点睛】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数k是解题的关键.
    15、:k<1.
    【解析】
    ∵一元二次方程有两个不相等的实数根,
    ∴△==4﹣4k>0,
    解得:k<1,
    则k的取值范围是:k<1.
    故答案为k<1.
    16、
    【解析】
    由题意可知:2x-y=,然后等式两边同时乘以-3得到-6x+3y=-,然后代入计算即可.
    【详解】
    ∵2x-y=,
    ∴-6x+3y=-.
    ∴原式=--1=-.
    故答案为-.
    【点睛】
    本题主要考查的是求代数式的值,利用等式的性质求得-6x+3y=-是解题的关键.
    17、20.
    【解析】
    分析:连接AC,BD,根据勾股定理求出BD,根据三角形中位线定理,菱形的判定定理得到四边形EHGF为菱形,根据菱形的性质计算.
    解答:连接AC,BD在Rt△ABD中,BD= ∵四边形ABCD是矩形,∴AC=BD=10, ∵E、H分别是AB、AD的中点,∴EH∥BD,EF=BD=5,同理,FG∥BD,
    FG=BD=5,GH∥AC,GH=AC=5, ∴四边形EHGF为菱形,∴四边形EFGH的周长=5×4=20,故答案为20.
    点睛:本题考查了中点四边形,掌握三角形的中位线定理、菱形的判定定理是解答本题的关键.
    18、1
    【解析】
    分析:首先根据正比例函数得出a的值,然后将交点坐标代入反比例函数解析式得出k的值.
    详解:将(a,1)代入正比例函数可得:a=1, ∴交点坐标为(1,1),
    ∴k=1×1=1.
    点睛:本题主要考查的是利用待定系数法求函数解析式,属于基础题型.根据正比例函数得出交点坐标是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、证明见解析.
    【解析】
    (1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;
    (2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.
    【详解】
    (1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,
    ∴DB=CB,∠ABD=∠EBC,∠ABE=60°,
    ∵AB⊥EC,
    ∴∠ABC=90°,
    ∴∠DBE=∠CBE=30°,
    在△BDE和△BCE中,
    ∵,
    ∴△BDE≌△BCE;
    (2)四边形ABED为菱形;
    由(1)得△BDE≌△BCE,
    ∵△BAD是由△BEC旋转而得,
    ∴△BAD≌△BEC,
    ∴BA=BE,AD=EC=ED,
    又∵BE=CE,
    ∴BA=BE=ED= AD
    ∴四边形ABED为菱形.
    考点:旋转的性质;全等三角形的判定与性质;菱形的判定.
    20、(1)补全统计图如图见解析;(2) “称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)月销售额奖励标准应定为22万元.
    【解析】
    (1) 根据称职的人数及其所占百分比求得总人数, 据此求得不称职、 基本称职和优秀的百分比, 再求出优秀的总人数, 从而得出销售 26 万元的人数, 据此即可补全图形 .
    (2) 根据中位数和众数的定义求解可得;
    (3) 根据中位数的意义求得称职和优秀的中位数即可得出符合要求的数据 .
    【详解】
    (1)依题可得:
    “不称职”人数为:2+2=4(人),
    “基本称职”人数为:2+3+3+2=10(人),
    “称职”人数为:4+5+4+3+4=20(人),
    ∴总人数为:20÷50%=40(人),
    ∴不称职”百分比:a=4÷40=10%,
    “基本称职”百分比:b=10÷40=25%,
    “优秀”百分比:d=1-10%-25%-50%=15%,
    ∴“优秀”人数为:40×15%=6(人),
    ∴得26分的人数为:6-2-1-1=2(人),
    补全统计图如图所示:

    (2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人,
    “优秀”25万2人,26万2人,27万1人,28万1人;
    “称职”的销售员月销售额的中位数为:22万,众数:21万;
    “优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;
    (3)由(2)知月销售额奖励标准应定为22万.
    ∵“称职”和“优秀”的销售员月销售额的中位数为:22万,
    ∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.
    【点睛】
    考查频数分布直方图、 扇形统计图、 中位数、 众数等知识, 解题的关键是灵活运用所学知识解决问题.
    21、有触礁危险,理由见解析.
    【解析】
    试题分析:过点P作PD⊥AC于D,在Rt△PBD和Rt△PAD中,根据三角函数AD,BD就可以用PD表示出来,根据AB=12海里,就得到一个关于PD的方程,求得PD.从而可以判断如果渔船不改变航线继续向东航行,有没有触礁危险.
    试题解析:有触礁危险.理由:过点P作PD⊥AC于D.

    设PD为x,
    在Rt△PBD中,∠PBD=90°-45°=45°.
    ∴BD=PD=x.
    在Rt△PAD中,
    ∵∠PAD=90°-60°=30°
    ∴AD=
    ∵AD=AB+BD
    ∴x=12+x
    ∴x=
    ∵6(+1)<18
    ∴渔船不改变航线继续向东航行,有触礁危险.
    【点睛】本题主要考查解直角三角形在实际问题中的应用,构造直角三角形是解题的前提和关键.
    22、(1)3;(1)x1=4,x1=1.
    【解析】
    (1)根据有理数的混合运算法则计算即可;
    (1)先移项,再提取公因式求解即可.
    【详解】
    解:(1)原式=8×(﹣)﹣4×+1
    =8×﹣1+1
    =3;
    (1)移项得:x(x﹣4)﹣1(x﹣4)=0,
    (x﹣4)(x﹣1)=0,
    x﹣4=0,x﹣1=0,
    x1=4,x1=1.
    【点睛】
    本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.
    23、(1)文学书的单价为40元/本,科普书的单价为1元/本;(2)购进1本文学书后最多还能购进2本科普书.
    【解析】
    (1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,根据数量=总价÷单价结合用800元购进的文学书本数与用1200元购进的科普书本数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)设购进m本科普书,根据总价=文学书的单价×购进本数+科普书的单价×购进本数结合总价不超过5000元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.
    【详解】
    解:(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,
    依题意,得:,
    解得:x=40,
    经检验,x=40是原分式方程的解,且符合题意,
    ∴x+20=1.
    答:文学书的单价为40元/本,科普书的单价为1元/本.
    (2)设购进m本科普书,
    依题意,得:40×1+1m≤5000,
    解得:m≤.
    ∵m为整数,
    ∴m的最大值为2.
    答:购进1本文学书后最多还能购进2本科普书.
    【点睛】
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
    24、(1);(2)图象见解析,或;(3)
    【解析】
    (1)将抛物线的解析式配成顶点式,即可得出顶点坐标;
    (2)根据抛物线经过点M,用待定系数法求出抛物线的解析式,即可得出图象,然后将纵坐标3代入抛物线的解析式中,求出横坐标,然后将点再代入反比例函数的表达式中即可求出反比例函数的表示式;
    (3)设出A的坐标,表示出C,D的坐标,得到CD的长度,根据题意找到CD的最小值,因为AD的长度不变,所以当CD最小时,对角线AC最小,则答案可求.
    【详解】
    解:(1),
    抛物线的顶点的坐标为.
    故答案为:
    (2)将代入抛物线的解析式得:
    解得:,
    抛物线的解析式为.
    抛物线的大致图象如图所示:

    将代入得:

    解得:或
    抛物线与反比例函数图象的交点坐标为或.
    将代入得:,

    将代入得:,

    综上所述,反比例函数的表达式为或.
    (3)设点的坐标为,
    则点的坐标为,
    的坐标为.

    的长随的增大而减小.
    矩形在其对称轴的左侧,抛物线的对称轴为,


    当时,的长有最小值,的最小值.
    的长度不变,
    当最小时,有最小值.
    的最小值
    故答案为:.
    【点睛】
    本题主要考查二次函数,反比例函数与几何综合,掌握二次函数,反比例函数的图象与性质是解题的关键.
    25、(1)每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)共有5种方案;
    (3)当100<k<150时,购进电冰箱38台,空调62台,总利润最大;当0<k<100时,购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元.
    【解析】
    (1)用“用9000元购进电冰箱的数量与用7200元购进空调数量相等”建立方程即可;(2)建立不等式组求出x的范围,代入即可得出结论;(3)建立y1=(k﹣100)x+20000,分三种情况讨论即可.
    【详解】
    (1)设每台空调的进价为m元,则每台电冰箱的进价(m+300)元,
    由题意得,,
    ∴m=1200,
    经检验,m=1200是原分式方程的解,也符合题意,
    ∴m+300=1500元,
    答:每台空调的进价为1200元,每台电冰箱的进价为1500元;
    (2)由题意,y=(1600﹣1500)x+(1400﹣1200)(100﹣x)=﹣100x+20000,
    ∵,
    ∴33≤x≤38,
    ∵x为正整数,
    ∴x=34,35,36,37,38,
    即:共有5种方案;
    (3)设厂家对电冰箱出厂价下调k(0<k<150)元后,这100台家电的销售总利润为y1元,
    ∴y1=(1600﹣1500+k)x+(1400﹣1200)(100﹣x)=(k﹣100)x+20000,
    当100<k<150时,y1随x的最大而增大,
    ∴x=38时,y1取得最大值,
    即:购进电冰箱38台,空调62台,总利润最大,
    当0<k<100时,y1随x的最大而减小,
    ∴x=34时,y1取得最大值,
    即:购进电冰箱34台,空调66台,总利润最大,
    当k=100时,无论采取哪种方案,y1恒为20000元.
    【点睛】
    本题考查了一次函数的应用,分式方程的应用,不等式组的应用,根据题意找出等量关系是解题的关键.
    26、(1)① 6,② 2或4,③ 1<m<4;(2)或.
    【解析】
    (1)①根据“折线距离”的定义直接列式计算;
    ②根据“折线距离”的定义列出方程,求解即可;
    ③根据“折线距离”的定义列出式子,可知其几何意义是数轴上表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3.
    (2)由题意可知,根据图像易得t的取值范围.
    【详解】
    解:(1) ①


    ∴ b=2或4
    ③ ,
    即数轴上表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3,所以1<m<4
    (2)设E(x,y),则,
    如图,若点E在⊙F上,则.

    【点睛】
    本题主要考查坐标与图形,正确理解新定义及其几何意义,利用数形结合的思想思考问题是解题关键.
    27、(1)证明见解析;(2).
    【解析】
    (1)作辅助线,先根据垂径定理得:OA⊥BC,再证明OA⊥AE,则AE是⊙O的切线;
    (2)连接OC,证明△ACE∽△DAE,得,计算CE的长,设⊙O的半径为r,根据勾股定理得:r2=62+(r-2)2,解出可得结论.
    【详解】
    (1)证明:连接OA,交BC于G,

    ∵∠ABC=∠ADB.∠ABC=∠ADE,
    ∴∠ADB=∠ADE,
    ∴,
    ∴OA⊥BC,
    ∵四边形ABCE是平行四边形,
    ∴AE∥BC,
    ∴OA⊥AE,
    ∴AE是⊙O的切线;
    (2)连接OC,
    ∵AB=AC=CE,
    ∴∠CAE=∠E,
    ∵四边形ABCE是平行四边形,
    ∴BC∥AE,∠ABC=∠E,
    ∴∠ADC=∠ABC=∠E,
    ∴△ACE∽△DAE,,
    ∵AE=12,CD=10,
    ∴AE2=DE•CE,
    144=(10+CE)CE,
    解得:CE=8或-18(舍),
    ∴AC=CE=8,
    ∴Rt△AGC中,AG==2,
    设⊙O的半径为r,
    由勾股定理得:r2=62+(r-2)2,
    r=,
    则⊙O的半径是.
    【点睛】
    此题考查了垂径定理,圆周角定理,相似三角形的判定与性质,切线的判定与性质,熟练掌握各自的判定与性质是解本题的关键.

    相关试卷

    2023年湖北省武汉市青山区中考数学模拟试卷(二)(含解析): 这是一份2023年湖北省武汉市青山区中考数学模拟试卷(二)(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年湖北省武汉市青山区中考数学备考试卷(二)(含解析): 这是一份2022年湖北省武汉市青山区中考数学备考试卷(二)(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2021-2022学年武汉地区十一校中考数学五模试卷含解析: 这是一份2021-2022学年武汉地区十一校中考数学五模试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,的整数部分是,下列计算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map