湖北省枣阳市太平三中学2022年中考一模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为( )
A.(,0) B.(2,0) C.(,0) D.(3,0)
2.下列图形中,是轴对称图形但不是中心对称图形的是( )
A.直角梯形 B.平行四边形 C.矩形 D.正五边形
3.下列计算正确的是( )
A.2x+3x=5x B.2x•3x=6x C.(x3)2=5 D.x3﹣x2=x
4.关于x的不等式的解集为x>3,那么a的取值范围为( )
A.a>3 B.a<3 C.a≥3 D.a≤3
5.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:
①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,
其中正确的是( )
A.①②③ B.①③④ C.①③⑤ D.②④⑤
6.有两组数据,A组数据为2、3、4、5、6;B组数据为1、7、3、0、9,这两组数据的( )
A.中位数相等 B.平均数不同 C.A组数据方差更大 D.B组数据方差更大
7.-4的绝对值是( )
A.4 B. C.-4 D.
8.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c<1;②a﹣b+c<1;③b+2a<1;④abc>1.其中所有正确结论的序号是( )
A.③④ B.②③ C.①④ D.①②③
9.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.
A. B. C. D.
10.如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在2×4的正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,△ABC的顶点都在格点上,将△ABC绕着点C按顺时针方向旋转一定角度后,得到△A'B'C',点A'、B'在格点上,则点A走过的路径长为_____(结果保留π)
12.已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_______.
13.对于函数,若x>2,则y______3(填“>”或“<”).
14.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=_____.
15.将多项式因式分解的结果是 .
16.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF=__.
三、解答题(共8题,共72分)
17.(8分)重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.求每件A种商品和每件B种商品售出后所得利润分别为多少元?由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?
18.(8分)如图,已知A,B两点在数轴上,点A表示的数为-10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)数轴上点B对应的数是______.经过几秒,点M、点N分别到原点O的距离相等?
19.(8分)某制衣厂某车间计划用10天加工一批出口童装和成人装共360件,该车间的加工能力是:每天能单独加工童装45件或成人装30件.
(1)该车间应安排几天加工童装,几天加工成人装,才能如期完成任务;
(2)若加工童装一件可获利80元, 加工成人装一件可获利120元, 那么该车间加工完这批服装后,共可获利多少元.
20.(8分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量(件与销售价(元/件)之间的函数关系如图所示.求与之间的函数关系式,并写出自变量的取值范围;求每天的销售利润W(元与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?
21.(8分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.
22.(10分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:
产品名称
核桃
花椒
甘蓝
每辆汽车运载量(吨)
10
6
4
每吨土特产利润(万元)
0.7
0.8
0.5
若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元.
(1)求y与x之间的函数关系式;
(2)若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.
23.(12分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.
调查结果统计表
组别
分组(单位:元)
人数
A
0≤x<30
4
B
30≤x<60
16
C
60≤x<90
a
D
90≤x<120
b
E
x≥120
2
请根据以上图表,解答下列问题:填空:这次被调查的同学共有 人,a+b= ,m= ;求扇形统计图中扇形C的圆心角度数;该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.
24.如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.
求证:AE∥CF.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.
【详解】
解:过点B作BD⊥x轴于点D,
∵∠ACO+∠BCD=90°,
∠OAC+∠ACO=90°,
∴∠OAC=∠BCD,
在△ACO与△BCD中,
∴△ACO≌△BCD(AAS)
∴OC=BD,OA=CD,
∵A(0,2),C(1,0)
∴OD=3,BD=1,
∴B(3,1),
∴设反比例函数的解析式为y=,
将B(3,1)代入y=,
∴k=3,
∴y=,
∴把y=2代入y=,
∴x=,
当顶点A恰好落在该双曲线上时,
此时点A移动了个单位长度,
∴C也移动了个单位长度,
此时点C的对应点C′的坐标为(,0)
故选:C.
【点睛】
本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.
2、D
【解析】分析:根据轴对称图形与中心对称图形的概念结合矩形、平行四边形、直角梯形、正五边形的性质求解.
详解:A.直角梯形不是轴对称图形,也不是中心对称图形,故此选项错误;
B.平行四边形不是轴对称图形,是中心对称图形,故此选项错误;
C.矩形是轴对称图形,也是中心对称图形,故此选项错误;
D.正五边形是轴对称图形,不是中心对称图形,故此选项正确.
故选D.
点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.
3、A
【解析】
依据合并同类项法则、单项式乘单项式法则、积的乘方法则进行判断即可.
【详解】
A、2x+3x=5x,故A正确;
B、2x•3x=6x2,故B错误;
C、(x3)2=x6,故C错误;
D、x3与x2不是同类项,不能合并,故D错误.
故选A.
【点睛】
本题主要考查的是整式的运算,熟练掌握相关法则是解题的关键.
4、D
【解析】
分析:先解第一个不等式得到x>3,由于不等式组的解集为x>3,则利用同大取大可得到a的范围.
详解:解不等式2(x-1)>4,得:x>3,
解不等式a-x<0,得:x>a,
∵不等式组的解集为x>3,
∴a≤3,
故选D.
点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
5、C
【解析】
试题解析:∵抛物线的顶点坐标A(1,3),
∴抛物线的对称轴为直线x=-=1,
∴2a+b=0,所以①正确;
∵抛物线开口向下,
∴a<0,
∴b=-2a>0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,所以②错误;
∵抛物线的顶点坐标A(1,3),
∴x=1时,二次函数有最大值,
∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;
∵抛物线与x轴的一个交点为(4,0)
而抛物线的对称轴为直线x=1,
∴抛物线与x轴的另一个交点为(-2,0),所以④错误;
∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)
∴当1<x<4时,y2<y1,所以⑤正确.
故选C.
考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点.
6、D
【解析】
分别求出两组数据的中位数、平均数、方差,比较即可得出答案.
【详解】
A组数据的中位数是:4,平均数是:(2+3+4+5+6) ÷5=4,
方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2] ÷5=2;
B组数据的中位数是:3,平均数是:(1+7+3+0+9) ÷5=4,
方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2] ÷5=12;
∴两组数据的中位数不相等,平均数相等,B组方差更大.
故选D.
【点睛】
本题考查了中位数、平均数、方差的计算,熟练掌握中位数、平均数、方差的计算方法是解答本题的关键.
7、A
【解析】
根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)
【详解】
根据绝对值的概念可得-4的绝对值为4.
【点睛】
错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆.
8、C
【解析】
试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解:①当x=1时,y=a+b+c=1,故本选项错误;
②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<1,故本选项正确;
③由抛物线的开口向下知a<1,
∵对称轴为1>x=﹣>1,
∴2a+b<1,
故本选项正确;
④对称轴为x=﹣>1,
∴a、b异号,即b>1,
∴abc<1,
故本选项错误;
∴正确结论的序号为②③.
故选B.
点评:二次函数y=ax2+bx+c系数符号的确定:
(1)a由抛物线开口方向确定:开口方向向上,则a>1;否则a<1;
(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;
(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>1;否则c<1;
(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.
9、B
【解析】
设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.
【详解】
解:设商品的进价为x元,售价为每件0.8×200元,由题意得
0.8×200=x+40
解得:x=120
答:商品进价为120元.
故选:B.
【点睛】
此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.
10、A
【解析】
分析:根据从上面看得到的图形是俯视图,可得答案.
详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,
故选:A.
点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
分析:连接AA′,根据勾股定理求出AC=AC′,及AA′的长,然后根据勾股定理的逆定理得出△ACA′为等腰直角三角形,然后根据弧长公式求解即可.
详解:连接AA′,如图所示.
∵AC=A′C=,AA′=,
∴AC2+A′C2=AA′2,
∴△ACA′为等腰直角三角形,
∴∠ACA′=90°,
∴点A走过的路径长=×2πAC=π.
故答案为:π.
点睛:本题主要考查了几何变换的类型以及勾股定理及逆定理的运用,弧长公式,解题时注意:在旋转变换下,对应线段相等.解决问题的关键是找出变换的规律,根据弧长公式求解.
12、16或1
【解析】
题目给出等腰三角形有两条边长为5和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
【详解】
(1)当三角形的三边是5,5,6时,则周长是16;
(2)当三角形的三边是5,6,6时,则三角形的周长是1;
故它的周长是16或1.
故答案为:16或1.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
13、<
【解析】
根据反比例函数的性质即可解答.
【详解】
当x=2时,,
∵k=6时,
∴y随x的增大而减小
∴x>2时,y<3
故答案为:<
【点睛】
此题主要考查了反比例函数的性质,解题的关键在于利用反比例函数图象上点的坐标特点判断函数值的取值范围 .
14、
【解析】
根据垂径定理求得 然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB-S△DOE+S△BEC.
【详解】
如图,假设线段CD、AB交于点E,
∵AB是O的直径,弦CD⊥AB,
∴
又∵
∴
∴
∴S阴影=S扇形ODB−S△DOE+S△BEC
故答案为:.
【点睛】
考查圆周角定理,垂径定理,扇形面积的计算,熟练掌握扇形的面积公式是解题的关键.
15、m(m+n)(m﹣n).
【解析】
试题分析:原式==m(m+n)(m﹣n).故答案为:m(m+n)(m﹣n).
考点:提公因式法与公式法的综合运用.
16、15°
【解析】
根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.
【详解】
解答:
连接OB,
∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,
∴OA=OB=AB,∴△AOB为等边三角形.
∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°.
由圆周角定理得 ,
故答案为15°.
三、解答题(共8题,共72分)
17、(1)200元和100元(2)至少6件
【解析】
(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;
(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解即可.
【详解】
解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,
得,解得:,
答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.
(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得
200a+100(34﹣a)≥4000,
解得:a≥6
答:威丽商场至少需购进6件A种商品.
18、(1)1;(2)经过2秒或2秒,点M、点N分别到原点O的距离相等
【解析】
试题分析:(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;
(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论.
试题解析:(1)∵OB=3OA=1,
∴B对应的数是1.
(2)设经过x秒,点M、点N分别到原点O的距离相等,
此时点M对应的数为3x-2,点N对应的数为2x.
①点M、点N在点O两侧,则
2-3x=2x,
解得x=2;
②点M、点N重合,则,
3x-2=2x,
解得x=2.
所以经过2秒或2秒,点M、点N分别到原点O的距离相等.
19、 (1) 该车间应安排4天加工童装,6天加工成人装;(2) 36000元.
【解析】
(1)利用某车间计划用10天加工一批出口童装和成人装共360件,分别得出方程组成方程组求出即可;
(2)利用(1)中所求,分别得出两种服装获利即可得出答案.
【详解】
解:(1)设该车间应安排x天加工童装,y天加工成人装,由题意得:
,
解得:,
答:该车间应安排4天加工童装,6天加工成人装;
(2)∵45×4=180,30×6=180,
∴180×80+180×120=180×(80+120)=36000(元),
答:该车间加工完这批服装后,共可获利36000元.
【点睛】
本题考查二元一次方程组的应用.
20、(1) (2),,144元
【解析】
(1)利用待定系数法求解可得关于的函数解析式;
(2)根据“总利润每件的利润销售量”可得函数解析式,将其配方成顶点式,利用二次函数的性质进一步求解可得.
【详解】
(1)设与的函数解析式为,
将、代入,得:,
解得:,
所以与的函数解析式为;
(2)根据题意知,
,
,
当时,随的增大而增大,
,
当时,取得最大值,最大值为144,
答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.
【点睛】
本题考查了二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.
21、(1)15人;(2)补图见解析.(3).
【解析】
(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;
(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;
(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.
【详解】
解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;
(2)A2的人数为15﹣2﹣6﹣4=3(人)
补全图形,如图所示,
A1所在圆心角度数为:×360°=48°;
(3)画出树状图如下:
共6种等可能结果,符合题意的有3种
∴选出一名男生一名女生的概率为:P=.
【点睛】
本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.
22、 (1)y=﹣3.4x+141.1;(1)当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.
【解析】
(1)根据题意可以得装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x﹣(1x+1)=(12﹣3x)辆,从而可以得到y与x的函数关系式;
(1)根据装花椒的汽车不超过8辆,可以求得x的取值范围,从而可以得到y的最大值,从而可以得到总利润最大时,装运各种产品的车辆数.
【详解】
(1)若装运核桃的汽车为x辆,则装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x﹣(1x+1)=(12﹣3x)辆,
根据题意得:y=10×0.7x+4×0.5(1x+1)+6×0.8(12﹣3x)=﹣3.4x+141.1.
(1)根据题意得:,
解得:7≤x≤,
∵x为整数,
∴7≤x≤2.
∵10.6>0,
∴y随x增大而减小,
∴当x=7时,y取最大值,最大值=﹣3.4×7+141.1=117.4,此时:1x+1=12,12﹣3x=1.
答:当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.
【点睛】
本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.
23、50;28;8
【解析】
【分析】1)用B组的人数除以B组人数所占的百分比,即可得这次被调查的同学的人数,利用A组的人数除以这次被调查的同学的人数即可求得m的值,用总人数减去A、B、E的人数即可求得a+b的值;
(2)先求得C组人数所占的百分比,乘以360°即可得扇形统计图中扇形的圆心角度数;(3)用总人数1000乘以每月零花钱的数额在范围的人数的百分比即可求得答案.
【详解】解:(1)50,28,8;
(2)(1-8%-32%-16%-4%)× 360°=40%× 360°=144°.
即扇形统计图中扇形C的圆心角度数为144°;
(3)1000×=560(人).
即每月零花钱的数额x元在60≤x<120范围的人数为560人.
【点睛】本题考核知识点:统计图表. 解题关键点:从统计图表获取信息,用样本估计总体.
24、证明见解析
【解析】
试题分析:通过全等三角形△ADE≌△CBF的对应角相等证得∠AED=∠CFB,则由平行线的判定证得结论.
证明:∵平行四边形ABCD中,AD=BC,AD∥BC,∴∠ADE=∠CBF.
∵在△ADE与△CBF中,AD=BC,∠ADE=∠CBF, DE=BF,
∴△ADE≌△CBF(SAS).∴∠AED=∠CFB.
∴AE∥CF.
湖北省枣阳市太平一中学2022年中考试题猜想数学试卷含解析: 这是一份湖北省枣阳市太平一中学2022年中考试题猜想数学试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,下列方程中,没有实数根的是等内容,欢迎下载使用。
2021-2022学年湖北省襄阳市枣阳市徐寨中学中考一模数学试题含解析: 这是一份2021-2022学年湖北省襄阳市枣阳市徐寨中学中考一模数学试题含解析,共20页。试卷主要包含了的相反数是,计算6m3÷的结果是,点M,如图,在中,等内容,欢迎下载使用。
湖北省襄阳市枣阳市太平三中学2022年中考数学最后一模试卷含解析: 这是一份湖北省襄阳市枣阳市太平三中学2022年中考数学最后一模试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,一次函数y=kx+k,下列运算正确的是,下列计算正确的是,下列四个命题,正确的有个等内容,欢迎下载使用。