|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年湖北省襄阳市枣阳市徐寨中学中考一模数学试题含解析
    立即下载
    加入资料篮
    2021-2022学年湖北省襄阳市枣阳市徐寨中学中考一模数学试题含解析01
    2021-2022学年湖北省襄阳市枣阳市徐寨中学中考一模数学试题含解析02
    2021-2022学年湖北省襄阳市枣阳市徐寨中学中考一模数学试题含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年湖北省襄阳市枣阳市徐寨中学中考一模数学试题含解析

    展开
    这是一份2021-2022学年湖北省襄阳市枣阳市徐寨中学中考一模数学试题含解析,共20页。试卷主要包含了的相反数是,计算6m3÷的结果是,点M,如图,在中,等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.若二次函数的图象与轴有两个交点,坐标分别是(x1,0),(x2,0),且. 图象上有一点在轴下方,则下列判断正确的是( )
    A. B. C. D.
    2.如果,那么代数式的值是( )
    A.6 B.2 C.-2 D.-6
    3.如图,AB∥CD,FE⊥DB,垂足为E,∠1=60°,则∠2的度数是(  )

    A.60° B.50° C.40° D.30°
    4.现有两根木棒,它们的长分别是20cm和30cm,若不改变木棒的长短,要钉成一个三角形木架,则应在下列四根木棒中选取( )
    A.10cm的木棒 B.40cm的木棒 C.50cm的木棒 D.60cm的木棒
    5.如图是正方体的表面展开图,则与“前”字相对的字是(  )

    A.认 B.真 C.复 D.习
    6.的相反数是 ( )
    A. B. C.3 D.-3
    7.计算6m3÷(-3m2)的结果是(  )
    A.-3m B.-2m C.2m D.3m
    8.点M(1,2)关于y轴对称点的坐标为(  )
    A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)
    9.如图,是半圆圆的直径,的两边分别交半圆于,则为的中点,已知,则( )

    A. B. C. D.
    10.如图,在中,.点是的中点,连结,过点作,分别交于点,与过点且垂直于的直线相交于点,连结.给出以下四个结论:①;②点是的中点;③;④,其中正确的个数是( )

    A.4 B.3 C.2 D.1
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若分式的值为正数,则x的取值范围_____.
    12.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.
    13.鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示.根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是______.

    14.=__________
    15.已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45º.则图中阴影部分的面积是____________.

    16.在△ABC中,∠A:∠B:∠C=1:2:3,它的最小边的长是2cm,则它的最大边的长是_____cm.
    三、解答题(共8题,共72分)
    17.(8分)定义:和三角形一边和另两边的延长线同时相切的圆叫做三角形这边上的旁切圆.
    如图所示,已知:⊙I是△ABC的BC边上的旁切圆,E、F分别是切点,AD⊥IC于点D.
    (1)试探究:D、E、F三点是否同在一条直线上?证明你的结论.
    (2)设AB=AC=5,BC=6,如果△DIE和△AEF的面积之比等于m,,试作出分别以 , 为两根且二次项系数为6的一个一元二次方程.

    18.(8分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)

    19.(8分)某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:

    7.2 9.69.67.89.3 4 6.58.59.99.6

    5.89.79.76.89.96.98.26.78.69.7
    根据上面的数据,将下表补充完整:

    4.0≤x≤4.9
    5.0≤x≤5.9
    6.0≤x≤6.9
    7.0≤x≤7.9
    8.0≤x≤8.9
    9.0≤x≤10.0

    1
    0
    1
    2
    1
    5

    ____
    ____
    _____
    ______
    _____
    _______
    (说明:月销售额在8.0万元及以上可以获得奖金,7.0~7.9万元为良好,6.0~6.9万元为合格,6.0万元以下为不合格)
    两组样本数据的平均数、中位数、众数如表所示:
    结论:
    人员
    平均数(万元)
    中位数(万元)
    众数(万元)

    8.2
    8.9
    9.6

    8.2
    8.4
    9.7
    (1)估计乙业务员能获得奖金的月份有______个;
    (2)可以推断出_____业务员的销售业绩好,理由为_______.(至少从两个不同的角度说明推断的合理性)
    20.(8分)(2017四川省内江市)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:
    (1)这项被调查的总人数是多少人?
    (2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;
    (3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.

    21.(8分)为了解某市市民上班时常用交通工具的状况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如图所示的尚不完整的统计图:

    根据以上统计图,解答下列问题:本次接受调查的市民共有  人;扇形统计图中,扇形B的圆心角度数是  ;请补全条形统计图;若该市“上班族”约有15万人,请估计乘公交车上班的人数.
    22.(10分)如图1,△ABC中,AB=AC=6,BC=4,点D、E分别在边AB、AC上,且AD=AE=1,连接DE、CD,点M、N、P分别是线段DE、BC、CD的中点,连接MP、PN、MN.
    (1)求证:△PMN是等腰三角形;
    (2)将△ADE绕点A逆时针旋转,
    ①如图2,当点D、E分别在边AC两侧时,求证:△PMN是等腰三角形;
    ②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,请直接写出此时BD的长.

    23.(12分)综合与实践:
    概念理解:将△ABC 绕点 A 按逆时针方向旋转,旋转角记为 θ(0°≤θ≤90°),并使各边长变为原来的 n 倍,得到△AB′C′,如图,我们将这种变换记为[θ,n],: .

    问题解决:(2)如图,在△ABC 中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得到△AB′C′,使点 B,C,C′在同一直线上,且四边形 ABB′C′为矩形,求 θ 和 n 的值.

    拓广探索:(3)在△ABC 中,∠BAC=45°,∠ACB=90°,对△ABC作变换 得到△AB′C′,则四边形 ABB′C′为正方形
    24.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.求证:DE是⊙O的切线;若AE=6,∠D=30°,求图中阴影部分的面积.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.
    【详解】
    A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;
    B、∵x1<x2,
    ∴△=b2-4ac>0,故本选项错误;
    C、若a>0,则x1<x0<x2,
    若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;
    D、若a>0,则x0-x1>0,x0-x2<0,
    所以,(x0-x1)(x0-x2)<0,
    ∴a(x0-x1)(x0-x2)<0,
    若a<0,则(x0-x1)与(x0-x2)同号,
    ∴a(x0-x1)(x0-x2)<0,
    综上所述,a(x0-x1)(x0-x2)<0正确,故本选项正确.
    2、A
    【解析】
    【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.
    【详解】∵3a2+5a-1=0,
    ∴3a2+5a=1,
    ∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,
    故选A.
    【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.
    3、D
    【解析】
    由EF⊥BD,∠1=60°,结合三角形内角和为180°即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.
    【详解】
    解:在△DEF中,∠1=60°,∠DEF=90°,
    ∴∠D=180°-∠DEF-∠1=30°.
    ∵AB∥CD,
    ∴∠2=∠D=30°.
    故选D.
    【点睛】
    本题考查平行线的性质以及三角形内角和为180°,解题关键是根据平行线的性质,找出相等、互余或互补的角.
    4、B
    【解析】
    设应选取的木棒长为x,再根据三角形的三边关系求出x的取值范围.进而可得出结论.
    【详解】
    设应选取的木棒长为x,则30cm-20cm<x<30cm+20cm,即10cm<x<50cm.
    故选B.
    【点睛】
    本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.
    5、B
    【解析】
    分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.
    详解:由图形可知,与“前”字相对的字是“真”.
    故选B.
    点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.
    6、B
    【解析】
    先求的绝对值,再求其相反数:
    根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的距离是,所以的绝对值是;
    相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.因此的相反数是.故选B.
    7、B
    【解析】
    根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.
    【详解】
    6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.
    故选B.
    8、A
    【解析】
    关于y轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数.
    【详解】
    点M(1,2)关于y轴对称点的坐标为(-1,2)
    【点睛】
    本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.
    9、C
    【解析】
    连接AE,只要证明△ABC是等腰三角形,AC=AB即可解决问题.
    【详解】
    解:如图,连接AE,

    ∵AB是直径,
    ∴∠AEB=90°,即AE⊥BC,
    ∵EB=EC,
    ∴AB=AC,
    ∴∠C=∠B,
    ∵∠BAC=50°,
    ∴∠C= (180°-50°)=65°,
    故选:C.
    【点睛】
    本题考查了圆周角定理、等腰三角形的判定和性质、线段的垂直平分线的性质定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.
    10、C
    【解析】
    用特殊值法,设出等腰直角三角形直角边的长,证明△CDB∽△BDE,求出相关线段的长;易证△GAB≌△DBC,求出相关线段的长;再证AG∥BC,求出相关线段的长,最后求出△ABC和△BDF的面积,即可作出选择.
    【详解】
    解:由题意知,△ABC是等腰直角三角形,
    设AB=BC=2,则AC=2,
    ∵点D是AB的中点,
    ∴AD=BD=1,
    在Rt△DBC中,DC=,(勾股定理)
    ∵BG⊥CD,
    ∴∠DEB=∠ABC=90°,
    又∵∠CDB=∠BDE,
    ∴△CDB∽△BDE,
    ∴∠DBE=∠DCB, ,即
    ∴DE= ,BE=,
    在△GAB和△DBC中,
    ∴△GAB≌△DBC(ASA)
    ∴AG=DB=1,BG=CD=,
    ∵∠GAB+∠ABC=180°,
    ∴AG∥BC,
    ∴△AGF∽△CBF,
    ∴,且有AB=BC,故①正确,
    ∵GB=,AC=2,
    ∴AF==,故③正确,
    GF=,FE=BG﹣GF﹣BE=,故②错误,
    S△ABC=AB•AC=2,S△BDF=BF•DE=××=,故④正确.
    故选B.
    【点睛】
    本题考查了相似三角形的判定与性质、全等三角形的判定与性质以及等腰直角三角形的相关性质,中等难度,注意合理的运用特殊值法是解题关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、x>1
    【解析】
    试题解析:由题意得:
    >0,
    ∵-6<0,
    ∴1-x<0,
    ∴x>1.
    12、15p
    【解析】
    试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=•2π•3•5=15π.
    故答案为15π.
    考点:圆锥的计算.
    13、113407, 北京市近两年的专利授权量平均每年增加6458.5件.
    【解析】
    依据北京市近两年的专利授权量的增长速度,即可预估2018年北京市专利授权量.
    【详解】
    解:∵北京市近两年的专利授权量平均每年增加:(件),
    ∴预估2018年北京市专利授权量约为106948+6458.5≈113407(件),
    故答案为:113407,北京市近两年的专利授权量平均每年增加6458.5件.
    【点睛】
    此题考查统计图的意义,解题的关键在于看懂图中数据.
    14、2;
    【解析】
    试题解析:先求-2的平方4,再求它的算术平方根,即:.
    15、(-)cm2
    【解析】
    S阴影=S扇形-S△OBD= 52-×5×5=.
    故答案是: .
    16、1.
    【解析】
    根据在△ABC中,∠A:∠B:∠C=1:2:3,三角形内角和等于180°可得∠A,∠B,∠C的度数,它的最小边的长是2cm,从而可以求得最大边的长.
    【详解】
    ∵在△ABC中,∠A:∠B:∠C=1:2:3,

    ∵最小边的长是2cm,
    ∴a=2.
    ∴c=2a=1cm.
    故答案为:1.
    【点睛】
    考查含30度角的直角三角形的性质,掌握30度角所对的直角边等于斜边的一半是解题的关键.

    三、解答题(共8题,共72分)
    17、 (1) D、E、F三点是同在一条直线上.(2) 6x2﹣13x+6=1.
    【解析】
    (1)利用切线长定理及梅氏定理即可求证;
    (2)利用相似和韦达定理即可求解.
    解:(1)结论:D、E、F三点是同在一条直线上.
    证明:分别延长AD、BC交于点K,

    由旁切圆的定义及题中已知条件得:AD=DK,AC=CK,
    再由切线长定理得:AC+CE=AF,BE=BF,
    ∴KE=AF.∴,
    由梅涅劳斯定理的逆定理可证,D、E、F三点共线,
    即D、E、F三点共线.
    (2)∵AB=AC=5,BC=6,
    ∴A、E、I三点共线,CE=BE=3,AE=4,
    连接IF,则△ABE∽△AIF,△ADI∽△CEI,A、F、I、D四点共圆.
    设⊙I的半径为r,则:,
    ∴,即,,
    ∴由△AEF∽△DEI得:

    ∴.
    ∴,
    因此,由韦达定理可知:分别以、为两根且二次项系数为6的一个一元二次方程是6x2﹣13x+6=1.
    点睛:本是一道关于圆的综合题.正确分析图形并应用图形的性质是解题的关键.
    18、操作平台C离地面的高度为7.6m.
    【解析】
    分析:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,∠HAF=90°,再计算出∠CAF=28°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF即可.
    详解:作CE⊥BD于F,AF⊥CE于F,如图2,

    易得四边形AHEF为矩形,
    ∴EF=AH=3.4m,∠HAF=90°,
    ∴∠CAF=∠CAH-∠HAF=118°-90°=28°,
    在Rt△ACF中,∵sin∠CAF=,
    ∴CF=9sin28°=9×0.47=4.23,
    ∴CE=CF+EF=4.23+3.4≈7.6(m),
    答:操作平台C离地面的高度为7.6m.
    点睛:本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算.
    19、填表见解析;(1)6;(2)甲;甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.
    【解析】
    (1)月销售额在8.0万元及以上可以获得奖金,去销售额中找到乙大于8.0的个数即可解题,
    (2)根据中位数和平均数即可解题.
    【详解】
    解:如图,
    销售额
    数量
    x
    人员
    4.0≤x≤4.9
    5.0≤x≤5.9
    6.0≤x≤6.9
    7.0≤x≤7.9
    8.0≤x≤8.9
    9.0≤x≤10.0

    1
    0
    1
    2
    1
    5

    0
    1
    3
    0
    2
    4
    (1)估计乙业务员能获得奖金的月份有6个;
    (2)可以推断出甲业务员的销售业绩好,理由为:甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.
    故答案为0,1,3,0,2,4;6;甲,甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.
    【点睛】
    本题考查了统计的相关知识,众数,平均数的应用,属于简单题,将图表信息转换成有用信息是解题关键.
    20、(1)50;(2)108°;(3).
    【解析】
    分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案.
    本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图如图所示.
    (2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=.

    点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.
    21、(1)1;(2)43.2°;(3)条形统计图如图所示:见解析;(4)估计乘公交车上班的人数为6万人.
    【解析】
    (1)根据D组人数以及百分比计算即可.
    (2)根据圆心角度数=360°×百分比计算即可.
    (3)求出A,C两组人数画出条形图即可.
    (4)利用样本估计总体的思想解决问题即可.
    【详解】
    (1)本次接受调查的市民共有:50÷25%=1(人),
    故答案为1.
    (2)扇形统计图中,扇形B的圆心角度数=360°×=43.2°;
    故答案为:43.2°
    (3)C组人数=1×40%=80(人),A组人数=1﹣24﹣80﹣50﹣16=30(人).
    条形统计图如图所示:

    (4)15×40%=6(万人).
    答:估计乘公交车上班的人数为6万人.
    【点睛】
    本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    22、(1)见解析;(2)①见解析;②.
    【解析】
    (1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论PM=PN;
    (2)①先证明△ABD≌△ACE,得BD=CE,同理根据三角形中位线定理可得结论;
    ②如图4,连接AM,计算AN和DE、EM的长,如图3,证明△ABD≌△CAE,得BD=CE,根据勾股定理计算CM的长,可得结论
    【详解】
    (1)如图1,∵点N,P是BC,CD的中点,
    ∴PN∥BD,PN=BD,
    ∵点P,M是CD,DE的中点,
    ∴PM∥CE,PM=CE,
    ∵AB=AC,AD=AE,
    ∴BD=CE,
    ∴PM=PN,
    ∴△PMN是等腰三角形;
    (2)①如图2,∵∠DAE=∠BAC,
    ∴∠BAD=∠CAE,
    ∵AB=AC,AD=AE,
    ∴△ABD≌△ACE,
    ∵点M、N、P分别是线段DE、BC、CD的中点,
    ∴PN=BD,PM=CE,
    ∴PM=PN,
    ∴△PMN是等腰三角形;
    ②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,如图3,

    ∵∠BAC=∠DAE,
    ∴∠BAD=∠CAE,
    ∵AB=AC,AD=AE,
    ∴△ABD≌△CAE,
    ∴BD=CE,
    如图4,连接AM,

    ∵M是DE的中点,N是BC的中点,AB=AC,
    ∴A、M、N共线,且AN⊥BC,
    由勾股定理得:AN==4,
    ∵AD=AE=1,AB=AC=6,
    ∴=,∠DAE=∠BAC,
    ∴△ADE∽△AEC,
    ∴,
    ∴,
    ∴AM=,DE=,
    ∴EM=,
    如图3,Rt△ACM中,CM===,
    ∴BD=CE=CM+EM=.
    【点睛】
    此题是三角形的综合题,主要考查了三角形的中位线定理,等腰三角形的判定和性质,全等和相似三角形的判定和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)①的关键是判断出△ABD≌△ACE,解(2)②的关键是判断出△ADE∽△AEC
    23、(1);(2);(3).
    【解析】
    (1)根据定义可知△ABC∽△AB′C′,再根据相似三角形的面积之比等于相似比的平方即可;
    (2)根据四边形是矩形,得出,进而得出,根据30°直角三角形的性质即可得出答案;
    (3)根据四边形 ABB′C′为正方形,从而得出,再根据等腰直角三角形的性质即可得出答案.
    【详解】
    解:(1)∵△AB′C′的边长变为了△ABC的n倍,
    ∴△ABC∽△AB′C′,
    ∴,
    故答案为:.
    (2)四边形是矩形,
    ∴.

    在中,,



    (3)若四边形 ABB′C′为正方形,
    则,,
    ∴,
    ∴,
    又∵在△ABC中,AB=,
    ∴,

    故答案为:.

    【点睛】
    本题考查了几何变换中的新定义问题,以及相似三角形的判定和性质,理解[θ,n]的意义是解题的关键.
    24、(1)证明见解析;(2)阴影部分的面积为.
    【解析】
    (1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.
    【详解】
    解:(1)连接OC, ∵OA=OC, ∴∠OAC=∠OCA,
    ∵AC平分∠BAE, ∴∠OAC=∠CAE,
    ∴∠OCA=∠CAE, ∴OC∥AE, ∴∠OCD=∠E,
    ∵AE⊥DE, ∴∠E=90°, ∴∠OCD=90°, ∴OC⊥CD,
    ∵点C在圆O上,OC为圆O的半径, ∴CD是圆O的切线;
    (2)在Rt△AED中, ∵∠D=30°,AE=6, ∴AD=2AE=12,
    在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,
    ∴DB=OB=OC=AD=4,DO=8,
    ∴CD=
    ∴S△OCD==8, ∵∠D=30°,∠OCD=90°,
    ∴∠DOC=60°, ∴S扇形OBC=×π×OC2=,
    ∵S阴影=S△COD﹣S扇形OBC ∴S阴影=8﹣,
    ∴阴影部分的面积为8﹣.


    相关试卷

    2023-2024学年湖北省襄阳市枣阳市徐寨中学数学九上期末学业水平测试模拟试题含答案: 这是一份2023-2024学年湖北省襄阳市枣阳市徐寨中学数学九上期末学业水平测试模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,若,面积之比为,则相似比为,半径为6的圆上有一段长度为1等内容,欢迎下载使用。

    湖北省襄阳市枣阳市徐寨中学2023-2024学年数学八年级第一学期期末检测模拟试题含答案: 这是一份湖北省襄阳市枣阳市徐寨中学2023-2024学年数学八年级第一学期期末检测模拟试题含答案,共7页。试卷主要包含了下列图形中,对称轴最多的图形是,下列叙述中,错误的是,如图,是用棋子摆成的“上”字等内容,欢迎下载使用。

    湖北省襄阳市徐寨中学2021-2022学年中考数学模拟预测题含解析: 这是一份湖北省襄阳市徐寨中学2021-2022学年中考数学模拟预测题含解析,共19页。试卷主要包含了计算的正确结果是,下列计算中,错误的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map