2022年湖北省枣阳市第五中学中考三模数学试题含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.下列4个点,不在反比例函数图象上的是( )
A.( 2,-3) B.(-3,2) C.(3,-2) D.( 3,2)
2.不等式组的解集表示在数轴上正确的是( )
A. B. C. D.
3.下表是某校合唱团成员的年龄分布.
年龄/岁
13
14
15
16
频数
5
15
x
对于不同的x,下列关于年龄的统计量不会发生改变的是( )
A.众数、中位数 B.平均数、中位数 C.平均数、方差 D.中位数、方差
4.如图,若AB∥CD,CD∥EF,那么∠BCE=( )
A.∠1+∠2 B.∠2-∠1
C.180°-∠1+∠2 D.180°-∠2+∠1
5.下列几何体是棱锥的是( )
A. B. C. D.
6.-10-4的结果是( )
A.-7 B.7 C.-14 D.13
7.如图,已知正五边形内接于,连结,则的度数是( )
A. B. C. D.
8.抛物线y=ax2﹣4ax+4a﹣1与x轴交于A,B两点,C(x1,m)和D(x2,n)也是抛物线上的点,且x1<2<x2,x1+x2<4,则下列判断正确的是( )
A.m<n B.m≤n C.m>n D.m≥n
9.按如图所示的方法折纸,下面结论正确的个数( )
①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.
A.1 个 B.2 个 C.1 个 D.4 个
10.如图,是的直径,弦,,,则阴影部分的面积为( )
A.2π B.π C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.观察下列图形:它们是按一定的规律排列的,依照此规律,第n个图形共有___个★.
12.如图,△ABC中,过重心G的直线平行于BC,且交边AB于点D,交边AC于点E,如果设=,=,用,表示,那么=___.
13.已知⊙O1、⊙O2的半径分别为2和5,圆心距为d,若⊙O1与⊙O2相交,那么d的取值范围是_________.
14.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为_____.
15.如图,点 A 是反比例函数 y=﹣(x<0)图象上的点,分别过点 A 向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为______.
16.计算:(3+1)(3﹣1)= .
三、解答题(共8题,共72分)
17.(8分)体育老师为了解本校九年级女生1分钟“仰卧起坐”体育测试项目的达标情况,从该校九年级136名女生中,随机抽取了20名女生,进行了1分钟仰卧起坐测试,获得数据如下:
收集数据:抽取20名女生的1分钟仰卧起坐测试成绩(个)如下:
38 46 42 52 55 43 59 46 25 38
35 45 51 48 57 49 47 53 58 49
(1)整理、描述数据:请你按如下分组整理、描述样本数据,把下列表格补充完整:
范围
25≤x≤29
30≤x≤34
35≤x≤39
40≤x≤44
45≤x≤49
50≤x≤54
55≤x≤59
人数
(说明:每分钟仰卧起坐个数达到49个及以上时在中考体育测试中可以得到满分)
(2)分析数据:样本数据的平均数、中位数、满分率如下表所示:
平均数
中位数
满分率
46.8
47.5
45%
得出结论:①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为 ;
②该中心所在区县的九年级女生的1分钟“仰卧起坐”总体测试成绩如下:
平均数
中位数
满分率
45.3
49
51.2%
请你结合该校样本测试成绩和该区县总体测试成绩,为该校九年级女生的1分钟“仰卧起坐”达标情况做一下评估,并提出相应建议.
18.(8分)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,求BD的长.
19.(8分)如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度.(结果保留根号)
20.(8分)如图,菱形ABCD的边长为20cm,∠ABC=120°,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿A→B的路线向点B运动;过点P作PQ∥BD,与AC相交于点Q,设运动时间为t秒,0<t<1.
(1)设四边形PQCB的面积为S,求S与t的关系式;
(2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?
(3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由.
21.(8分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.
(1)2014年这种礼盒的进价是多少元/盒?
(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?
22.(10分)某通讯公司推出了A,B两种上宽带网的收费方式(详情见下表)
设月上网时间为x h(x为非负整数),请根据表中提供的信息回答下列问题
(1)设方案A的收费金额为y1元,方案B的收费金额为y2元,分别写出y1,y2关于x的函数关系式;
(2)当35<x<50时,选取哪种方式能节省上网费,请说明理由
23.(12分)已知Rt△ABC,∠A=90°,BC=10,以BC为边向下作矩形BCDE,连AE交BC于F.
(1)如图1,当AB=AC,且sin∠BEF=时,求的值;
(2)如图2,当tan∠ABC=时,过D作DH⊥AE于H,求的值;
(3)如图3,连AD交BC于G,当时,求矩形BCDE的面积
24.如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方米处的点C出发,沿斜面坡度的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈.计算结果保留根号)
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
分析:根据得k=xy=-6,所以只要点的横坐标与纵坐标的积等于-6,就在函数图象上.
解答:解:原式可化为:xy=-6,
A、2×(-3)=-6,符合条件;
B、(-3)×2=-6,符合条件;
C、3×(-2)=-6,符合条件;
D、3×2=6,不符合条件.
故选D.
2、C
【解析】
根据题意先解出的解集是,
把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右;
表示时要注意方向向左,起始的标记为实心圆点,
综上所述C的表示符合这些条件.
故应选C.
3、A
【解析】
由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.
【详解】
由题中表格可知,年龄为15岁与年龄为16岁的频数和为,则总人数为,故该组数据的众数为14岁,中位数为(岁),所以对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选A.
【点睛】
本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.
4、D
【解析】
先根据AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把两式相加即可得出结论.
【详解】
解:∵AB∥CD,
∴∠BCD=∠1,
∵CD∥EF,
∴∠DCE=180°-∠2,
∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.
故选:D.
【点睛】
本题考查的是平行线的判定,用到的知识点为:两直线平行,内错角相等,同旁内角互补.
5、D
【解析】
分析:根据棱锥的概念判断即可.
A是三棱柱,错误;
B是圆柱,错误;
C是圆锥,错误;
D是四棱锥,正确.
故选D.
点睛:本题考查了立体图形的识别,关键是根据棱锥的概念判断.
6、C
【解析】
解:-10-4=-1.故选C.
7、C
【解析】
根据多边形内角和定理、正五边形的性质求出∠ABC、CD=CB,根据等腰三角形的性质求出∠CBD,计算即可.
【详解】
∵五边形为正五边形
∴
∵
∴
∴
故选:C.
【点睛】
本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)×180°是解题的关键.
8、C
【解析】
分析:将一般式配方成顶点式,得出对称轴方程根据抛物线与x轴交于两点,得出求得
距离对称轴越远,函数的值越大,根据判断出它们与对称轴之间的关系即可判定.
详解:∵
∴此抛物线对称轴为
∵抛物线与x轴交于两点,
∴当时,得
∵
∴
∴
故选C.
点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大,
9、C
【解析】
∵∠1+∠1=∠2,∠1+∠1+∠2=180°,
∴∠1+∠1=∠2=90°,故①正确;
∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正确;
∵∠1+∠1=90°,∠1+∠BAE=90°,
∴∠1=∠BAE,
又∵∠B=∠C,
∴△ABE∽△ECF.故③,④正确;
故选C.
10、D
【解析】
分析:连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可.
详解:连接OD,
∵CD⊥AB,
∴ (垂径定理),
故
即可得阴影部分的面积等于扇形OBD的面积,
又∵
∴ (圆周角定理),
∴OC=2,
故S扇形OBD=
即阴影部分的面积为.
故选D.
点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
分别求出第1个、第2个、第3个、第4个图形中★的个数,得到第5个图形中★的个数,进而找到规律,得出第n个图形中★的个数,即可求解.
【详解】
第1个图形中有1+3×1=4个★,
第2个图形中有1+3×2=7个★,
第3个图形中有1+3×3=10个★,
第4个图形中有1+3×4=13个★,
第5个图形中有1+3×5=16个★,
…
第n个图形中有1+3×n=(3n+1)个★.
故答案是:1+3n.
【点睛】
考查了规律型:图形的变化类;根据图形中变化的量和n的关系与不变的量得到图形中★的个数与n的关系是解决本题的关键.
12、
【解析】
连接AG,延长AG交BC于F.首先证明DG=GE,再利用三角形法则求出即可解决问题.
【详解】
连接AG,延长AG交BC于F.
∵G是△ABC的重心,DE∥BC,
∴BF=CF,
,
∵,,
∴,
∵BF=CF,
∴DG=GE,
∵,,
∴,
∴,
故答案为.
【点睛】
本题考查三角形的重心,平行线的性质,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
13、3
若两圆的半径分别为R和r,且R≥r,圆心距为d:相交,则R-r
∵⊙O1和⊙O2的半径分别为2和5,且两圆的位置关系为相交,
∴圆心距O1O2的取值范围为5-2
本题考查的知识点是圆与圆的位置关系,解题的关键是熟练的掌握圆与圆的位置关系.
14、0
【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.
【详解】把点(12,﹣5)代入直线y=kx得,
﹣5=12k,
∴k=﹣;
由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m(m>0),
设直线l与x轴、y轴分别交于点A、B,(如图所示)
当x=0时,y=m;当y=0时,x=m,
∴A(m,0),B(0,m),
即OA=m,OB=m,
在Rt△OAB中,AB=,
过点O作OD⊥AB于D,
∵S△ABO=OD•AB=OA•OB,
∴OD•=×m×m,
∵m>0,解得OD=m,
由直线与圆的位置关系可知m <6,解得m<,
故答案为0
【点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较直观明了.
15、4﹣π
【解析】
由题意可以假设A(-m,m),则-m2=-4,求出点A坐标即可解决问题.
【详解】
由题意可以假设A(-m,m),
则-m2=-4,
∴m=≠±2,
∴m=2,
∴S阴=S正方形-S圆=4-π,
故答案为4-π.
【点睛】
本题考查反比例函数图象上的点的特征、正方形的性质、圆的面积公式等知识,解题的关键是灵活运用所学知识解决问题
16、1.
【解析】
根据平方差公式计算即可.
【详解】
原式=(3)2-12
=18-1
=1
故答案为1.
【点睛】
本题考查的是二次根式的混合运算,掌握平方差公式、二次根式的性质是解题的关键.
三、解答题(共8题,共72分)
17、(1)补充表格见解析;(2)①61;②见解析.
【解析】
(1)根据所给数据分析补充表格即可.(2)①根据概率公式计算即可. ②根据平均数、中位数分别进行分析并根据分析结果给出建议即可.
【详解】
(1)补充表格如下:
范围
25≤x≤29
30≤x≤34
35≤x≤39
40≤x≤44
45≤x≤49
50≤x≤54
55≤x≤59
人数
1
0
3
2
7
3
4
(2)①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为136×≈61,
故答案为:61;
②从平均数角度看,该校女生1分钟仰卧起坐的平均成绩高于区县水平,整体水平较好;
从中位数角度看,该校成绩中等水平偏上的学生比例低于区县水平,该校测试成绩的满分率低于区县水平;
建议:该校在保持学校整体水平的同事,多关注接近满分的学生,提高满分成绩的人数.
【点睛】
本题考查的是统计表的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.
18、BD=2.
【解析】
作DM⊥BC,交BC延长线于M,连接AC,由勾股定理得出AC2=AB2+BC2=25,求出AC2+CD2=AD2,由勾股定理的逆定理得出△ACD是直角三角形,∠ACD=90°,证出∠ACB=∠CDM,得出△ABC∽△CMD,由相似三角形的对应边成比例求出CM=2AB=6,DM=2BC=8,得出BM=BC+CM=10,再由勾股定理求出BD即可.
【详解】
作DM⊥BC,交BC延长线于M,连接AC,如图所示:
则∠M=90°,
∴∠DCM+∠CDM=90°,
∵∠ABC=90°,AB=3,BC=4,
∴AC2=AB2+BC2=25,
∵CD=10,AD= ,
∴AC2+CD2=AD2,
∴△ACD是直角三角形,∠ACD=90°,
∴∠ACB+∠DCM=90°,
∴∠ACB=∠CDM,
∵∠ABC=∠M=90°,
∴△ABC∽△CMD,
∴,
∴CM=2AB=6,DM=2BC=8,
∴BM=BC+CM=10,
∴BD===,
【点睛】
本题考查了相似三角形的判定与性质、勾股定理、勾股定理的逆定理;熟练掌握相似三角形的判定与性质,证明由勾股定理的逆定理证出△ACD是直角三角形是解决问题的关键.
19、DE的长度为6+1.
【解析】
根据相似三角形的判定与性质解答即可.
【详解】
解:过E作EF⊥BC,
∵∠CDE=120°,
∴∠EDF=60°,
设EF为x,DF=x,
∵∠B=∠EFC=90°,
∵∠ACB=∠ECD,
∴△ABC∽△EFC,
∴,
即,
解得:x=9+2,
∴DE==6+1,
答:DE的长度为6+1.
【点睛】
本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.
20、 (1) S=﹣2(0<t<1); (2) ;(3)见解析.
【解析】
(1)如图1,根据S=S△ABC-S△APQ,代入可得S与t的关系式;
(2)设PM=x,则AM=2x,可得AP=x=4t,计算x的值,根据直角三角形30度角的性质可得AM=2PM=,根据AM=AO+OM,列方程可得t的值;
(3)存在,通过画图可知:N在CD上时,直线PN平分四边形APMN的面积,根据面积相等可得MG=AP,由AM=AO+OM,列式可得t的值.
【详解】
解:(1)如图1,∵四边形ABCD是菱形,
∴∠ABD=∠DBC=∠ABC=60°,AC⊥BD,
∴∠OAB=30°,
∵AB=20,
∴OB=10,AO=10,
由题意得:AP=4t,
∴PQ=2t,AQ=2t,
∴S=S△ABC﹣S△APQ,
=,
= ,
=﹣2t2+100(0<t<1);
(2)如图2,在Rt△APM中,AP=4t,
∵点Q关于O的对称点为M,
∴OM=OQ,
设PM=x,则AM=2x,
∴AP=x=4t,
∴x=,
∴AM=2PM=,
∵AM=AO+OM,
∴=10+10﹣2t,
t=;
答:当t为秒时,点P、M、N在一直线上;
(3)存在,
如图3,∵直线PN平分四边形APMN的面积,
∴S△APN=S△PMN,
过M作MG⊥PN于G,
∴ ,
∴MG=AP,
易得△APH≌△MGH,
∴AH=HM=t,
∵AM=AO+OM,
同理可知:OM=OQ=10﹣2t,
t=10=10﹣2t,
t=.
答:当t为秒时,使得直线PN平分四边形APMN的面积.
【点睛】
考查了全等三角形的判定与性质,对称的性质,三角形和四边形的面积,二次根式的化简等知识点,计算量大,解答本题的关键是熟练掌握动点运动时所构成的三角形各边的关系.
21、(1)35元/盒;(2)20%.
【解析】
试题分析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设年增长率为m,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.
试题解析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据题意得:,解得:x=35,经检验,x=35是原方程的解.
答:2014年这种礼盒的进价是35元/盒.
(2)设年增长率为m,2014年的销售数量为3500÷35=100(盒).
根据题意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).
答:年增长率为20%.
考点:一元二次方程的应用;分式方程的应用;增长率问题.
22、(1),;(2)当35<x<1时,选择B方式能节省上网费,见解析.
【解析】
(1)根据两种方式的收费标准,进行分类讨论即可求解;
(2)当35<x<1时,计算出y1-y2的值,即可得出答案.
【详解】
解:(1)由题意得:;
即;
;
即;
(2)选择B方式能节省上网费
当35<x<1时,有y1=3x-45,y2=1.
:y1-y2=3x-45-1=3x-2.记y=3x-2
因为3>4,有y随x的增大而增大
当x=35时,y=3.
所以当35<x<1时,有y>3,即y>4.
所以当35<x<1时,选择B方式能节省上网费
【点睛】
此题考查了一次函数的应用,注意根据图表得出解题需要的信息,难度一般,正确理解收费标准求出函数解析式是解题的关键.
23、 (1) ;(2)80;(3)100.
【解析】
(1)过A作AK⊥BC于K,根据sin∠BEF=得出,设FK=3a,AK=5a,可求得BF=a,故;(2)过A作AK⊥BC于K,延长AK交ED于G,则AG⊥ED,得△EGA∽△EHD,利用相似三角形的性质即可求出;(3)延长AB、ED交于K,延长AC、ED交于T,根据相似三角形的性质可求出BE=ED,故可求出矩形的面积.
【详解】
解:(1)过A作AK⊥BC于K,
∵sin∠BEF=,sin∠FAK=,
∴,
设FK=3a,AK=5a,
∴AK=4a,
∵AB=AC,∠BAC=90°,
∴BK=CK=4a,
∴BF=a,
又∵CF=7a,
∴
(2)过A作AK⊥BC于K,延长AK交ED于G,则AG⊥ED,
∵∠AGE=∠DHE=90°,
∴△EGA∽△EHD,
∴,
∴,其中EG=BK,
∵BC=10,tan∠ABC=,
cos∠ABC=,
∴BA=BC· cos∠ABC=,
BK= BA·cos∠ABC=
∴EG=8,
另一方面:ED=BC=10,
∴EH·EA=80
(3)延长AB、ED交于K,延长AC、ED交于T,
∵BC∥KT, ,
∴,同理:
∵FG2= BF·CG ∴,
∴ED2= KE·DT ∴ ,
又∵△KEB∽△CDT,∴,
∴KE·DT =BE2, ∴BE2=ED2
∴ BE=ED
∴
【点睛】
此题主要考查相似三角形的判定与性质,解题的关键根据题意作出辅助线再进行求解.
24、3+3.5
【解析】
延长ED交BC延长线于点F,则∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=2、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=4•tan37°可得答案.
【详解】
如图,延长ED交BC延长线于点F,则∠CFD=90°,
∵tan∠DCF=i=,
∴∠DCF=30°,
∵CD=4,
∴DF=CD=2,CF=CDcos∠DCF=4×=2,
∴BF=BC+CF=2+2=4,
过点E作EG⊥AB于点G,
则GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,
又∵∠AED=37°,
∴AG=GEtan∠AEG=4•tan37°,
则AB=AG+BG=4•tan37°+3.5=3+3.5,
故旗杆AB的高度为(3+3.5)米.
考点:1、解直角三角形的应用﹣仰角俯角问题;2、解直角三角形的应用﹣坡度坡角问题
2022年湖北省枣阳市钱岗中学中考数学模拟试题含解析: 这是一份2022年湖北省枣阳市钱岗中学中考数学模拟试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列命题中,错误的是,一元二次方程=0的两个根是,若,则的值为等内容,欢迎下载使用。
2021-2022学年湖北省襄阳市枣阳市徐寨中学中考一模数学试题含解析: 这是一份2021-2022学年湖北省襄阳市枣阳市徐寨中学中考一模数学试题含解析,共20页。试卷主要包含了的相反数是,计算6m3÷的结果是,点M,如图,在中,等内容,欢迎下载使用。
湖北省襄阳市枣阳市太平三中学2022年中考数学最后一模试卷含解析: 这是一份湖北省襄阳市枣阳市太平三中学2022年中考数学最后一模试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,一次函数y=kx+k,下列运算正确的是,下列计算正确的是,下列四个命题,正确的有个等内容,欢迎下载使用。

