广西壮族自治区河池市东兰县2022年中考数学全真模拟试题含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,一个斜边长为10cm的红色三角形纸片,一个斜边长为6cm的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是( )
A.60cm2 B.50cm2 C.40cm2 D.30cm2
2.如图是二次函数的部分图象,由图象可知不等式的解集是( )
A. B. C.且 D.x<-1或x>5
3.已知关于的方程,下列说法正确的是
A.当时,方程无解
B.当时,方程有一个实数解
C.当时,方程有两个相等的实数解
D.当时,方程总有两个不相等的实数解
4.-3的相反数是( )
A. B.3 C. D.-3
5.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠AFG的值为( )
A. B. C. D.
6.在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是( )
A. B. C. D.
7.如图,BC是⊙O的直径,A是⊙O上的一点,∠B=58°,则∠OAC的度数是( )
A.32° B.30° C.38° D.58°
8.下列运算正确的是( )
A.a3•a2=a6 B.a﹣2=﹣ C.3﹣2= D.(a+2)(a﹣2)=a2+4
9.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )
A. B. C. D.
10.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( )
A.8 B.9 C.10 D.11
二、填空题(共7小题,每小题3分,满分21分)
11.若+(y﹣2018)2=0,则x﹣2+y0=_____.
12.不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是________.
13.若一条直线经过点(1,1),则这条直线的解析式可以是(写出一个即可)______.
14.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是 .
15.正十二边形每个内角的度数为 .
16.若反比例函数y=的图象与一次函数y=x+k的图象有一个交点为(m,﹣4),则这个反比例函数的表达式为_____.
17.如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(-1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为___.
三、解答题(共7小题,满分69分)
18.(10分)如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.
(1)求证:BF=CD;
(2)连接BE,若BE⊥AF,∠BFA=60°,BE=,求平行四边形ABCD的周长.
19.(5分)珠海某企业接到加工“无人船”某零件5000个的任务.在加工完500个后,改进了技术,每天加工的零件数量是原来的1.5倍,整个加工过程共用了35天完成.求技术改进后每天加工零件的数量.
20.(8分)如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE与CD相交于点F.
(1)求证:;
(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;
(3)若PE=1,求△PBD的面积.
21.(10分)如图,四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,E为AB的中点.
(1)求证:△ADC∽△ACB;
(2)CE与AD有怎样的位置关系?试说明理由;
(3)若AD=4,AB=6,求的值.
22.(10分)我市某企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x天生产的产品数量为y件,y与x满足如下关系:
工人甲第几天生产的产品数量为70件?设第x天生产的产品成本为P元/件,P与的函数图象如图.工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时利润最大,最大利润是多少?
23.(12分)某商人制成了一个如图所示的转盘,取名为“开心大转盘”,游戏规定:参与者自由转动转盘,转盘停止后,若指针指向字母“A”,则收费2元,若指针指向字母“B”,则奖励3元;若指针指向字母“C”,则奖励1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?
24.(14分)某保健品厂每天生产A,B两种品牌的保健品共600瓶,A,B两种产品每瓶的成本和利润如表,设每天生产A产品x瓶,生产这两种产品每天共获利y元.
(1)请求出y关于x的函数关系式;
(2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?
(3)该厂每天生产的A,B两种产品被某经销商全部订购,厂家对A产品进行让利,每瓶利润降低元,厂家如何生产可使每天获利最大?最大利润是多少?
A
B
成本(元/瓶)
50
35
利润(元/瓶)
20
15
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
标注字母,根据两直线平行,同位角相等可得∠B=∠AED,然后求出△ADE和△EFB相似,根据相似三角形对应边成比例求出,即,设BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根据红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积计算即可得解.
【详解】
解:如图,∵正方形的边DE∥CF,
∴∠B=∠AED,
∵∠ADE=∠EFB=90°,
∴△ADE∽△EFB,
∴,
∴,
设BF=3a,则EF=5a,
∴BC=3a+5a=8a,
AC=8a×=a,
在Rt△ABC中,AC1+BC1=AB1,
即(a)1+(8a)1=(10+6)1,
解得a1=,
红、蓝两张纸片的面积之和=×a×8a-(5a)1,
=a1-15a1,
=a1,
=×,
=30cm1.
故选D.
【点睛】
本题考查根据相似三角形的性质求出直角三角形的两直角边,利用红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积求解是关键.
2、D
【解析】
利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出的解集:
由图象得:对称轴是x=2,其中一个点的坐标为(1,0),
∴图象与x轴的另一个交点坐标为(-1,0).
由图象可知:的解集即是y<0的解集,
∴x<-1或x>1.故选D.
3、C
【解析】
当时,方程为一元一次方程有唯一解.
当时,方程为一元二次方程,的情况由根的判别式确定:
∵,
∴当时,方程有两个相等的实数解,当且时,方程有两个不相等的实数解.综上所述,说法C正确.故选C.
4、B
【解析】
根据相反数的定义与方法解答.
【详解】
解:-3的相反数为.
故选:B.
【点睛】
本题考查相反数的定义与求法,熟练掌握方法是关键.
5、B
【解析】
如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.由题意可得:DE=1,∠HDE=60°,△BCD是等边三角形,即可求DH的长,HE的长,AE的长,
NE的长,EF的长,则可求sin∠AFG的值.
【详解】
解:如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.
∵四边形ABCD是菱形,AB=4,∠DAB=60°,
∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB
∴∠HDE=∠DAB=60°,
∵点E是CD中点
∴DE=CD=1
在Rt△DEH中,DE=1,∠HDE=60°
∴DH=1,HE=
∴AH=AD+DH=5
在Rt△AHE中,AE==1
∴AN=NE=,AE⊥GF,AF=EF
∵CD=BC,∠DCB=60°
∴△BCD是等边三角形,且E是CD中点
∴BE⊥CD,
∵BC=4,EC=1
∴BE=1
∵CD∥AB
∴∠ABE=∠BEC=90°
在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.
∴EF=
由折叠性质可得∠AFG=∠EFG,
∴sin∠EFG= sin∠AFG = ,故选B.
【点睛】
本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键.
6、A
【解析】
∵Rt△ABC中,∠C=90°,sinA=,
∴cosA=,
∴∠A+∠B=90°,
∴sinB=cosA=.
故选A.
7、A
【解析】
根据∠B=58°得出∠AOC=116°,半径相等,得出OC=OA,进而得出∠OAC=32°,利用直径和圆周角定理解答即可.
【详解】
解:∵∠B=58°,
∴∠AOC=116°,
∵OA=OC,
∴∠C=∠OAC=32°,
故选:A.
【点睛】
此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用.
8、C
【解析】
直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即可得出答案.
【详解】
A、a3•a2=a5,故A选项错误;
B、a﹣2=,故B选项错误;
C、3﹣2=,故C选项正确;
D、(a+2)(a﹣2)=a2﹣4,故D选项错误,
故选C.
【点睛】
本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键.
9、C
【解析】
根据平行四边形的性质和圆周角定理可得出答案.
【详解】
根据平行四边形的性质可知∠B=∠AOC,
根据圆内接四边形的对角互补可知∠B+∠D=180°,
根据圆周角定理可知∠D=∠AOC,
因此∠B+∠D=∠AOC+∠AOC=180°,
解得∠AOC=120°,
因此∠ADC=60°.
故选C
【点睛】
该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.
10、A
【解析】
分析:根据多边形的内角和公式及外角的特征计算.
详解:多边形的外角和是360°,根据题意得:
110°•(n-2)=3×360°
解得n=1.
故选A.
点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
直接利用偶次方的性质以及二次根式的性质分别化简得出答案.
【详解】
解:∵+(y﹣1018)1=0,
∴x﹣1=0,y﹣1018=0,
解得:x=1,y=1018,
则x﹣1+y0=1﹣1+10180=1+1=1.
故答案为:1.
【点睛】
此题主要考查了非负数的性质,正确得出x,y的值是解题关键.
12、
【解析】
先求出球的总数,再根据概率公式求解即可.
【详解】
∵不透明的袋子里装有2个白球,1个红球,
∴球的总数=2+1=3,
∴从袋子中随机摸出1个球,则摸出白球的概率=.
故答案为.
【点睛】
本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.
13、y=x.(答案不唯一)
【解析】
首先设一次函数解析式为:y=kx+b(k≠0), b取任意值后,把(1,1)代入所设的解析式里,即可得到k的值,进而得到答案.
【详解】
解:设直线的解析式y=kx+b,令b=0,
将(1,1)代入,得k=1,
此时解析式为:y=x.
由于b可为任意值,故答案不唯一.
故答案为:y=x.(答案不唯一)
【点睛】
本题考查了待定系数法求一次函数解析式.
14、4n﹣1.
【解析】
由图可知:第一个图案有阴影小三角形1个,第二图案有阴影小三角形1+4=6个,第三个图案有阴影小三角形1+8=11个,···那么第n个就有阴影小三角形1+4(n﹣1)=4n﹣1个.
15、
【解析】
首先求得每个外角的度数,然后根据外角与相邻的内角互为邻补角即可求解.
【详解】
试题分析:正十二边形的每个外角的度数是:=30°,
则每一个内角的度数是:180°﹣30°=150°.
故答案为150°.
16、y=﹣.
【解析】
把交点坐标代入两个解析式组成方程组,解方程组求得k,即可求得反比例函数的解析式.
【详解】
解:∵反比例函数y=的图象与一次函数y=x+k的图象有一个交点为(m,﹣4),
∴,
解得k=﹣5,
∴反比例函数的表达式为y=﹣,
故答案为y=﹣.
【点睛】
本题考查了反比例函数与一次函数的交点问题,根据图象上点的坐标特征得出方程组是解题的关键.
17、(3,2)
【解析】
根据平移的性质即可得到结论.
【详解】
∵将线段AB沿x轴的正方向平移,若点B的对应点B′的坐标为(2,0),
∵-1+3=2,
∴0+3=3
∴A′(3,2),
故答案为:(3,2)
【点睛】
本题考查了坐标与图形变化-平移.解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.
三、解答题(共7小题,满分69分)
18、(1)证明见解析;(2)12
【解析】
(1)由平行四边形的性质和角平分线得出∠BAF=∠BFA,即可得出AB=BF;
(2)由题意可证△ABF为等边三角形,点E是AF的中点. 可求EF、BF的值,即可得解.
【详解】
解:(1)证明:∵ 四边形ABCD为平行四边形,
∴ AB=CD,∠FAD=∠AFB
又∵ AF平分∠BAD,
∴ ∠FAD=∠FAB
∴ ∠AFB=∠FAB
∴ AB=BF
∴ BF=CD
(2)解:由题意可证△ABF为等边三角形,点E是AF的中点
在Rt△BEF中,∠BFA=60°,BE=,
可求EF=2,BF=4
∴ 平行四边形ABCD的周长为12
19、技术改进后每天加工1个零件.
【解析】
分析:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,根据题意列出分式方程,从而得出方程的解并进行检验得出答案.
详解:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,
根据题意可得, 解得x=100,
经检验x=100是原方程的解,则改进后每天加工1.
答:技术改进后每天加工1个零件.
点睛:本题主要考查的是分式方程的应用,属于基础题型.根据题意得出等量关系是解题的关键,最后我们还必须要对方程的解进行检验.
20、 (1)见解析;(2) AC∥BD,理由见解析;(3)
【解析】
(1)直接利用相似三角形的判定方法得出△BCE∽△DCP,进而得出答案;
(2)首先得出△PCE∽△DCB,进而求出∠ACB=∠CBD,即可得出AC与BD的位置关系;
(3)首先利用相似三角形的性质表示出BD,PM的长,进而根据三角形的面积公式得到△PBD的面积.
【详解】
(1)证明:∵△BCE和△CDP均为等腰直角三角形,
∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,
∴△BCE∽△DCP,
∴;
(2)解:结论:AC∥BD,
理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,
∴∠PCE=∠BCD,
又∵,
∴△PCE∽△DCB,
∴∠CBD=∠CEP=90°,
∵∠ACB=90°,
∴∠ACB=∠CBD,
∴AC∥BD;
(3)解:如图所示:作PM⊥BD于M,
∵AC=4,△ABC和△BEC均为等腰直角三角形,
∴BE=CE=4,
∵△PCE∽△DCB,
∴,即,
∴BD=,
∵∠PBM=∠CBD﹣∠CBP=45°,BP=BE+PE=4+1=5,
∴PM=5sin45°=
∴△PBD的面积S=BD•PM=××=.
【点睛】
本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定.
21、(1)证明见解析;(2)CE∥AD,理由见解析;(3).
【解析】
(1)根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的判定定理证明;
(2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得到CE=AE,根据等腰三角形的性质、平行线的判定定理证明;
(3)根据相似三角形的性质列出比例式,计算即可.
【详解】
解:(1)∵AC平分∠DAB,
∴∠DAC=∠CAB,
又∵AC2=AB•AD,
∴AD:AC=AC:AB,
∴△ADC∽△ACB;
(2)CE∥AD,
理由:∵△ADC∽△ACB,
∴∠ACB=∠ADC=90°,
又∵E为AB的中点,
∴∠EAC=∠ECA,
∵∠DAC=∠CAE,
∴∠DAC=∠ECA,
∴CE∥AD;
(3)∵AD=4,AB=6,CE=AB=AE=3,
∵CE∥AD,
∴∠FCE=∠DAC,∠CEF=∠ADF,
∴△CEF∽△ADF,
∴==,
∴=.
22、 (1)工人甲第12天生产的产品数量为70件;(2)第11天时,利润最大,最大利润是845元.
【解析】
分析:(1)根据y=70求得x即可;(2)先根据函数图象求得P关于x的函数解析式,再结合x的范围分类讨论,根据“总利润=单件利润×销售量”列出函数解析式,由二次函数的性质求得最值即可.
本题解析:
解:(1)若7.5x=70,得x=>4,不符合题意;
则5x+10=70,
解得x=12.
答:工人甲第12天生产的产品数量为70件.
(2)由函数图象知,当0≤x≤4时,P=40,
当4
∴P=x+36.
①当0≤x≤4时,W=(60-40)·7.5x=150x,
∵W随x的增大而增大,
∴当x=4时,W最大=600;
②当4
∵845>600,
∴当x=11时,W取得最大值845元.
答:第11天时,利润最大,最大利润是845元.
点睛:本题考查了一次函数的应用、二次函数的应用,解题的关键是理解题意,记住利润=出厂价-成本,学会利用函数的性质解决最值问题.
23、商人盈利的可能性大.
【解析】
试题分析:根据几何概率的定义,面积比即概率.图中A,B,C所占的面积与总面积之比即为A,B,C各自的概率,算出相应的可能性,乘以钱数,比较即可.
试题解析:商人盈利的可能性大.
商人收费:80××2=80(元),商人奖励:80××3+80××1=60(元),因为80>60,所以商人盈利的可能性大.
24、(1)y=5x+9000;(2)每天至少获利10800元;(3)每天生产A产品250件,B产品350件获利最大,最大利润为9625元.
【解析】
试题分析:(1)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;利润=A种品牌白酒瓶数×A种品牌白酒一瓶的利润+B种品牌白酒瓶数×B种品牌白酒一瓶的利润,列出函数关系式;
(2)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;成本=A种品牌白酒瓶数×A种品牌白酒一瓶的成本+B种品牌白酒瓶数×B种品牌白酒一瓶的成本,列出不等式,求x的值,再代入(1)求利润.
(3)列出y与x的关系式,求y的最大值时,x的值.
试题解析:
(1)y=20x+15(600-x) =5x+9000,
∴y关于x的函数关系式为y=5x+9000;
(2)根据题意,得50 x+35(600-x)≥26400,
解得x≥360,
∵y=5x+9000,5>0,
∴y随x的增大而增大,
∴当x=360时,y有最小值为10800,
∴每天至少获利10800元;
(3) ,
∵,∴当x=250时,y有最大值9625,
∴每天生产A产品250件,B产品350件获利最大,最大利润为9625元.
2023年广西河池市东兰县中考数学一模模拟试题(原卷版+解析版): 这是一份2023年广西河池市东兰县中考数学一模模拟试题(原卷版+解析版),文件包含精品解析2023年广西河池市东兰县中考数学一模模拟试题原卷版docx、精品解析2023年广西河池市东兰县中考数学一模模拟试题解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
2023-2024学年广西壮族自治区河池市东兰县九上数学期末统考试题含答案: 这是一份2023-2024学年广西壮族自治区河池市东兰县九上数学期末统考试题含答案,共9页。
广西壮族自治区河池市东兰县2022-2023学年七下数学期末达标检测模拟试题含答案: 这是一份广西壮族自治区河池市东兰县2022-2023学年七下数学期末达标检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列各组数分别为三角形的三边长,如果方程有增根,那么k的值等内容,欢迎下载使用。