终身会员
搜索
    上传资料 赚现金

    广西河池市两县重点名校2021-2022学年中考数学全真模拟试卷含解析

    立即下载
    加入资料篮
    广西河池市两县重点名校2021-2022学年中考数学全真模拟试卷含解析第1页
    广西河池市两县重点名校2021-2022学年中考数学全真模拟试卷含解析第2页
    广西河池市两县重点名校2021-2022学年中考数学全真模拟试卷含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广西河池市两县重点名校2021-2022学年中考数学全真模拟试卷含解析

    展开

    这是一份广西河池市两县重点名校2021-2022学年中考数学全真模拟试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,如图所示的正方体的展开图是,函数等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.的绝对值是(  )
    A.8 B.﹣8 C. D.﹣
    2.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为

    A. B.3 C.1 D.
    3.如图所示的几何体的俯视图是(  )

    A. B. C. D.
    4.《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。问:牛、羊各直金几何?译文:“假设有 5 头牛、2 只羊,值金 10 两;2 头牛、5 只羊,值金 8 两。问:每头牛、每只羊各值金多少两?” 设每头牛值金 x 两,每只羊值金 y 两,则列方程组错误的是( )
    A. B. C. D.
    5.如图,在菱形ABCD中,∠A=60°,E是AB边上一动点(不与A、B重合),且∠EDF=∠A,则下列结论错误的是(  )

    A.AE=BF B.∠ADE=∠BEF
    C.△DEF是等边三角形 D.△BEF是等腰三角形
    6.下列二次函数的图象,不能通过函数y=3x2的图象平移得到的是(   )
    A.y=3x2+2 B.y=3(x﹣1)2 C.y=3(x﹣1)2+2 D.y=2x2
    7.如图所示的正方体的展开图是(  )

    A. B. C. D.
    8.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是( )
    A.方程有两个相等的实数根
    B.方程有两个不相等的实数根
    C.没有实数根
    D.无法确定
    9.函数(为常数)的图像上有三点,,,则函数值的大小关系是( )
    A.y3<y1<y2 B.y3<y2<y1 C.y1<y2<y3 D.y2<y3<y1
    10.若一组数据2,3,4,5,x的平均数与中位数相等,则实数x的值不可能是( )
    A.6 B.3.5 C.2.5 D.1
    11.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()

    A. B.8 C. D.
    12.2018 年 1 月份,菏泽市市区一周空气质量报告中某项污染指数的数据是 41, 45,41,44,40,42,41,这组数据的中位数、众数分别是( )
    A.42,41 B.41,42 C.41,41 D.42,45
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是_____.
    14.正五边形的内角和等于______度.
    15.计算:.
    16.若关于x的一元二次方程x2+2x﹣m2﹣m=0(m>0),当m=1、2、3、…、2018时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,…,α2018、β2018,则:的值为_____.
    17.若代数式在实数范围内有意义,则x的取值范围是_______.
    18.如图,在△ABC中,BC=7,,tanC=1,点P为AB边上一动点(点P不与点B重合),以点P为圆心,PB 为半径画圆,如果点C在圆外,那么PB的取值范围______.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,,,,,交于点.求的值.

    20.(6分)已知关于x的方程.
    (1)当该方程的一个根为1时,求a的值及该方程的另一根;
    (2)求证:不论a取何实数,该方程都有两个不相等的实数根.
    21.(6分)如图,已知直线AB与轴交于点C,与双曲线交于A(3,)、B(-5,)两点.AD⊥轴于点D,BE∥轴且与轴交于点E.求点B的坐标及直线AB的解析式;判断四边形CBED的形状,并说明理由.

    22.(8分)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.
    求证:AB=DC;试判断△OEF的形状,并说明理由.
    23.(8分)如图①,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(﹣3,0)两点,与y轴交于点D(0,3).

    (1)求这个抛物线的解析式;
    (2)如图②,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为﹣2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;
    (3)如图③,连接AC交y轴于M,在x轴上是否存在点P,使以P、C、M为顶点的三角形与△AOM相似?若存在,求出点P的坐标;若不存在,请说明理由.
    24.(10分)某经销商从市场得知如下信息:

    A品牌手表
    B品牌手表
    进价(元/块)
    700
    100
    售价(元/块)
    900
    160
    他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.试写出y与x之间的函数关系式;若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;选择哪种进货方案,该经销商可获利最大;最大利润是多少元.
    25.(10分)综合与实践:
    概念理解:将△ABC 绕点 A 按逆时针方向旋转,旋转角记为 θ(0°≤θ≤90°),并使各边长变为原来的 n 倍,得到△AB′C′,如图,我们将这种变换记为[θ,n],: .

    问题解决:(2)如图,在△ABC 中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得到△AB′C′,使点 B,C,C′在同一直线上,且四边形 ABB′C′为矩形,求 θ 和 n 的值.

    拓广探索:(3)在△ABC 中,∠BAC=45°,∠ACB=90°,对△ABC作变换 得到△AB′C′,则四边形 ABB′C′为正方形
    26.(12分)如图,△ABC的顶点坐标分别为A(1,3)、B(4,1)、C(1,1).在图中以点O为位似中心在原点的另一侧画出△ABC放大1倍后得到的△A1B1C1,并写出A1的坐标;请在图中画出△ABC绕点O逆时针旋转90°后得到的△A1B1C1.

    27.(12分)某商场同时购进甲、乙两种商品共100件,其进价和售价如下表:
    商品名称


    进价(元/件)
    40
    90
    售价(元/件)
    60
    120
    设其中甲种商品购进x件,商场售完这100件商品的总利润为y元.写出y关于x的函数关系式;该商场计划最多投入8000元用于购买这两种商品,
    ①至少要购进多少件甲商品?
    ②若销售完这些商品,则商场可获得的最大利润是多少元?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据绝对值的计算法则解答.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:
    ①当a是正有理数时,a的绝对值是它本身a;
    ②当a是负有理数时,a的绝对值是它的相反数﹣a;
    ③当a是零时,a的绝对值是零.
    【详解】
    解:.
    故选
    【点睛】
    此题重点考查学生对绝对值的理解,熟练掌握绝对值的计算方法是解题的关键.
    2、A
    【解析】
    首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可
    【详解】
    ∵AB=3,AD=4,∴DC=3
    ∴根据勾股定理得AC=5
    根据折叠可得:△DEC≌△D′EC,
    ∴D′C=DC=3,DE=D′E
    设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,
    在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,
    解得:x=
    故选A.
    3、D
    【解析】
    找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中.
    【详解】
    从上往下看,该几何体的俯视图与选项D所示视图一致.
    故选D.
    【点睛】
    本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图.
    4、D
    【解析】
    由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案.
    【详解】
    解:设每头牛值金x两,每只羊值金y两,
    由5头牛、2只羊,值金10两可得:5x+2y=10,
    由2头牛、5只羊,值金8两可得2x+5y=8,
    则7头牛、7只羊,值金18两,据此可知7x+7y=18,
    所以方程组错误,
    故选:D.
    【点睛】
    本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到相等关系及等式的基本性质.
    5、D
    【解析】
    连接BD,可得△ADE≌△BDF,然后可证得DE=DF,AE=BF,即可得△DEF是等边三角形,然后可证得∠ADE=∠BEF.
    【详解】
    连接BD,∵四边形ABCD是菱形,
    ∴AD=AB,∠ADB=∠ADC,AB∥CD,
    ∵∠A=60°,
    ∴∠ADC=120°,∠ADB=60°,
    同理:∠DBF=60°,
    即∠A=∠DBF,
    ∴△ABD是等边三角形,
    ∴AD=BD,
    ∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,
    ∴∠ADE=∠BDF,
    ∵在△ADE和△BDF中,

    ∴△ADE≌△BDF(ASA),
    ∴DE=DF,AE=BF,故A正确;
    ∵∠EDF=60°,
    ∴△EDF是等边三角形,
    ∴C正确;
    ∴∠DEF=60°,
    ∴∠AED+∠BEF=120°,
    ∵∠AED+∠ADE=180°-∠A=120°,
    ∴∠ADE=∠BEF;
    故B正确.
    ∵△ADE≌△BDF,
    ∴AE=BF,
    同理:BE=CF,
    但BE不一定等于BF.
    故D错误.
    故选D.
    【点睛】
    本题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题.
    6、D
    【解析】
    分析:根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解:
    A、y=3x2的图象向上平移2个单位得到y=3x2+2,故本选项错误;
    B、y=3x2的图象向右平移1个单位得到y=3(x﹣1)2,故本选项错误;
    C、y=3x2的图象向右平移1个单位,向上平移2个单位得到y=3(x﹣1)2+2,故本选项错误;
    D、y=3x2的图象平移不能得到y=2x2,故本选项正确.
    故选D.
    7、A
    【解析】
    有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.根据立体图形表面的图形相对位置可以判断.
    【详解】
    把各个展开图折回立方体,根据三个特殊图案的相对位置关系,可知只有选项A正确.
    故选A
    【点睛】
    本题考核知识点:长方体表面展开图.解题关键点:把展开图折回立方体再观察.
    8、B
    【解析】
    试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.
    考点:一元二次方程根的判别式.
    9、A
    【解析】
    试题解析:∵函数y=(a为常数)中,-a1-1<0,
    ∴函数图象的两个分支分别在二、四象限,在每一象限内y随x的增大而增大,
    ∵>0,
    ∴y3<0;
    ∵-<-,
    ∴0<y1<y1,
    ∴y3<y1<y1.
    故选A.
    10、C
    【解析】
    因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.
    【详解】
    (1)将这组数据从小到大的顺序排列为2,3,4,5,x,
    处于中间位置的数是4,
    ∴中位数是4,
    平均数为(2+3+4+5+x)÷5,
    ∴4=(2+3+4+5+x)÷5,
    解得x=6;符合排列顺序;
    (2)将这组数据从小到大的顺序排列后2,3,4,x,5,
    中位数是4,
    此时平均数是(2+3+4+5+x)÷5=4,
    解得x=6,不符合排列顺序;
    (3)将这组数据从小到大的顺序排列后2,3,x,4,5,
    中位数是x,
    平均数(2+3+4+5+x)÷5=x,
    解得x=3.5,符合排列顺序;
    (4)将这组数据从小到大的顺序排列后2,x,3,4,5,
    中位数是3,
    平均数(2+3+4+5+x)÷5=3,
    解得x=1,不符合排列顺序;
    (5)将这组数据从小到大的顺序排列后x,2,3,4,5,
    中位数是3,
    平均数(2+3+4+5+x)÷5=3,
    解得x=1,符合排列顺序;
    ∴x的值为6、3.5或1.
    故选C.
    【点睛】
    考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.
    11、D
    【解析】
    ∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=1.
    设⊙O的半径为r,则OC=r-2,
    在Rt△AOC中,∵AC=1,OC=r-2,
    ∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.
    ∴AE=2r=3.
    连接BE,

    ∵AE是⊙O的直径,∴∠ABE=90°.
    在Rt△ABE中,∵AE=3,AB=8,∴.
    在Rt△BCE中,∵BE=6,BC=1,∴.故选D.
    12、C
    【解析】
    找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
    【详解】
    从小到大排列此数据为:40,1,1,1,42,44,45, 数据 1 出现了三次最多为众数,1 处在第 4 位为中位数.
    所以本题这组数据的中位数是 1,众数是 1.
    故选C.
    【点睛】
    考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、2
    【解析】
    试题分析:当x+3≥﹣x+1,
    即:x≥﹣1时,y=x+3,
    ∴当x=﹣1时,ymin=2,
    当x+3<﹣x+1,
    即:x<﹣1时,y=﹣x+1,
    ∵x<﹣1,
    ∴﹣x>1,
    ∴﹣x+1>2,
    ∴y>2,
    ∴ymin=2,
    14、540
    【解析】
    过正五边形五个顶点,可以画三条对角线,把五边形分成3个三角形
    ∴正五边形的内角和=3180=540°
    15、3+
    【解析】
    本题涉及零指数幂、负指数幂、绝对值、特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
    【详解】
    原式=2×+2﹣+1,
    =2+2﹣+1,
    =3+.
    【点睛】
    本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数、绝对值等考点的运算
    16、.
    【解析】
    利用根与系数的关系得到α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.把原式变形,再代入,即可求出答案.
    【详解】
    ∵x2+2x-m2-m=0,m=1,2,3,…,2018,
    ∴由根与系数的关系得:α1+β1=-2,α1β1=-1×2;
    α2+β2=-2,α2β2=-2×3;

    α2018+β2018=-2,α2018β2018=-2018×1.
    ∴原式=
    =
    =2×()
    =2×(1-)
    =,
    故答案为.
    【点睛】
    本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.
    17、
    【解析】
    先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
    解:∵在实数范围内有意义,
    ∴x-1≥2,
    解得x≥1.
    故答案为x≥1.
    本题考查的是二次根式有意义的条件,即被开方数大于等于2.
    18、
    【解析】
    分析:根据题意作出合适的辅助线,然后根据题意即可求得PB的取值范围.
    详解:作AD⊥BC于点D,作PE⊥BC于点E.∵在△ABC 中,BC=7,AC=3,tanC=1,∴AD=CD=3,∴BD=4,∴AB=5,由题意可得,当PB=PC时,点C恰好在以点P为圆心,PB为半径圆上.∵AD⊥BC,PE⊥BC,∴PE∥AD,∴△BPE∽△BDA,∴,即,得:BP=.故答案为0<PB<.

    点睛:本题考查了点与圆的位置关系、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、
    【解析】
    试题分析:本题考查了相似三角形的判定与性质,解直角三角形.由∠A=∠ACD,∠AOB=∠COD可证△ABO∽△CDO,从而;再在Rt△ABC和Rt△BCD中分别求出AB和CD的长,代入即可.
    解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴.
    在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1.
    在Rt△BCD中,∠BCD =90°,∠D=30°,BC=1,∴CD=,∴.
    20、(1),;(2)证明见解析.
    【解析】
    试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.
    (2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.
    试题解析:(1)设方程的另一根为x1,
    ∵该方程的一个根为1,∴.解得.
    ∴a的值为,该方程的另一根为.
    (2)∵,
    ∴不论a取何实数,该方程都有两个不相等的实数根.
    考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.
    21、(1)点B的坐标是(-5,-4);直线AB的解析式为:
    (2)四边形CBED是菱形.理由见解析
    【解析】
    (1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答;
    (2)由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.
    【详解】
    解:(1)∵双曲线过A(3,),∴.把B(-5,)代入,
    得. ∴点B的坐标是(-5,-4)
    设直线AB的解析式为,
    将 A(3,)、B(-5,-4)代入得,
    , 解得:.
    ∴直线AB的解析式为:
    (2)四边形CBED是菱形.理由如下:
    点D的坐标是(3,0),点C的坐标是(-2,0).
    ∵ BE∥轴, ∴点E的坐标是(0,-4).
    而CD =5, BE=5,且BE∥CD.
    ∴四边形CBED是平行四边形
    在Rt△OED中,ED2=OE2+OD2,∴ ED==5,∴ED=CD.
    ∴□CBED是菱形
    22、(1)证明略
    (2)等腰三角形,理由略
    【解析】
    证明:(1)∵BE=CF,
    ∴BE+EF=CF+EF, 即BF=CE.
    又∵∠A=∠D,∠B=∠C,
    ∴△ABF≌△DCE(AAS),
    ∴AB=DC.
    (2)△OEF为等腰三角形
    理由如下:∵△ABF≌△DCE,
    ∴∠AFB=∠DEC.
    ∴OE=OF.
    ∴△OEF为等腰三角形.
    23、【小题1】 设所求抛物线的解析式为:,将A(1,0)、B(-3,0)、 D(0,3)代入,得…………………………………………2分
    即所求抛物线的解析式为:……………………………3分
    【小题2】 如图④,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称,
    在x轴上取一点H,连接HF、HI、HG、GD、GE,则HF=HI…………………①
    设过A、E两点的一次函数解析式为:y=kx+b(k≠0),
    ∵点E在抛物线上且点E的横坐标为-2,将x=-2,代入抛物线,得
    ∴点E坐标为(-2,3)………………………………………………………………4分
    又∵抛物线图象分别与x轴、y轴交于点A(1,0)、B(-3,0)、
    D(0,3),所以顶点C(-1,4)
    ∴抛物线的对称轴直线PQ为:直线x=-1, [中国教#&~@育出%版网]
    ∴点D与点E关于PQ对称,GD=GE……………………………………………②
    分别将点A(1,0)、点E(-2,3)
    代入y=kx+b,得:
    解得:
    过A、E两点的一次函数解析式为:
    y=-x+1
    ∴当x=0时,y=1
    ∴点F坐标为(0,1)……………………5分
    ∴=2………………………………………③
    又∵点F与点I关于x轴对称,
    ∴点I坐标为(0,-1)
    ∴……………………………………④
    又∵要使四边形DFHG的周长最小,由于DF是一个定值,
    ∴只要使DG+GH+HI最小即可 ……………………………………6分
    由图形的对称性和①、②、③,可知,
    DG+GH+HF=EG+GH+HI
    只有当EI为一条直线时,EG+GH+HI最小
    设过E(-2,3)、I(0,-1)两点的函数解析式为:,
    分别将点E(-2,3)、点I(0,-1)代入,得:
    解得:
    过I、E两点的一次函数解析式为:y=-2x-1
    ∴当x=-1时,y=1;当y=0时,x=-;
    ∴点G坐标为(-1,1),点H坐标为(-,0)
    ∴四边形DFHG的周长最小为:DF+DG+GH+HF=DF+EI
    由③和④,可知:

    DF+EI=
    ∴四边形DFHG的周长最小为. …………………………………………7分
    【小题3】 如图⑤,

    由(2)可知,点A(1,0),点C(-1,4),设过A(1,0),点C(-1,4)两点的函数解析式为:,得:
    解得:,
    过A、C两点的一次函数解析式为:y=-2x+2,当x=0时,y=2,即M的坐标为(0,2);
    由图可知,△AOM为直角三角形,且, ………………8分
    要使,△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论; ……………………………………………………………………………9分
    ①当∠CMP=90°时,CM=,若则,可求的P(-4,0),则CP=5,,即P(-4,0)成立,若由图可判断不成立;……………………………………………………………………………………10分
    ②当∠PCM=90°时,CM=,若则,可求出
    P(-3,0),则PM=,显然不成立,若则,更不可能成立.……11分
    综上所述,存在以P、C、M为顶点的三角形与△AOM相似,点P的坐标为(-4,0)12分
    【解析】
    (1)直接利用三点式求出二次函数的解析式;
    (2)若四边形DFHG的周长最小,应将边长进行转换,利用对称性,要使四边形DFHG的周长最小,由于DF是一个定值,只要使DG+GH+HI最小即可,
    由图形的对称性和,可知,HF=HI,GD=GE,
    DG+GH+HF=EG+GH+HI
    只有当EI为一条直线时,EG+GH+HI最小,即
    ,DF+EI=
    即边形DFHG的周长最小为.
    (3)要使△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论,①当∠CMP=90°时,CM=,若则,可求的P(-4,0),则CP=5,,即P(-4,0)成立,若由图可判断不成立;②当∠PCM=90°时,CM=,若则,可求出P(-3,0),则PM=,显然不成立,若则,更不可能成立. 即求出以P、C、M为顶点的三角形与△AOM相似的P的坐标(-4,0)
    24、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.
    【解析】
    (1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;
    (2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;
    (3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.
    【详解】
    解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.
    由700x+100(100﹣x)≤40000得x≤50.
    ∴y与x之间的函数关系式为y=140x+6000(x≤50)
    (2)令y≥12600,即140x+6000≥12600,
    解得x≥47.1.
    又∵x≤50,∴经销商有以下三种进货方案:
    方案
    A品牌(块)
    B品牌(块)

    48
    52

    49
    51

    50
    50
    (3)∵140>0,∴y随x的增大而增大.
    ∴x=50时y取得最大值.
    又∵140×50+6000=13000,
    ∴选择方案③进货时,经销商可获利最大,最大利润是13000元.
    【点睛】
    本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.
    25、(1);(2);(3).
    【解析】
    (1)根据定义可知△ABC∽△AB′C′,再根据相似三角形的面积之比等于相似比的平方即可;
    (2)根据四边形是矩形,得出,进而得出,根据30°直角三角形的性质即可得出答案;
    (3)根据四边形 ABB′C′为正方形,从而得出,再根据等腰直角三角形的性质即可得出答案.
    【详解】
    解:(1)∵△AB′C′的边长变为了△ABC的n倍,
    ∴△ABC∽△AB′C′,
    ∴,
    故答案为:.
    (2)四边形是矩形,
    ∴.

    在中,,



    (3)若四边形 ABB′C′为正方形,
    则,,
    ∴,
    ∴,
    又∵在△ABC中,AB=,
    ∴,

    故答案为:.

    【点睛】
    本题考查了几何变换中的新定义问题,以及相似三角形的判定和性质,理解[θ,n]的意义是解题的关键.
    26、(1)A(﹣1,﹣6);(1)见解析
    【解析】
    试题分析:(1)把每个坐标做大1倍,并去相反数.(1)横纵坐标对调,并且把横坐标取相反数.
    试题解析:
    解:(1)如图,△A1B1C1为所作,A(﹣1,﹣6);
    (1)如图,△A1B1C1为所作.

    27、 (Ⅰ);(Ⅱ)①至少要购进20件甲商品;②售完这些商品,则商场可获得的最大利润是2800元.
    【解析】
    (Ⅰ)根据总利润=(甲的售价-甲的进价)×甲的进货数量+(乙的售价-乙的进价)×乙的进货数量列关系式并化简即可得答案;(Ⅱ)①根据总成本最多投入8000元列不等式即可求出x的范围,即可得答案;②根据一次函数的增减性确定其最大值即可.
    【详解】
    (Ⅰ)根据题意得:
    则y与x的函数关系式为.
    (Ⅱ),解得.
    ∴至少要购进20件甲商品.

    ∵,
    ∴y随着x的增大而减小
    ∴当时,有最大值,.
    ∴若售完这些商品,则商场可获得的最大利润是2800元.
    【点睛】
    本题考查一次函数的实际应用及一元一次不等式的应用,熟练掌握一次函数的性质是解题关键.

    相关试卷

    辽宁省铁岭市铁岭县重点名校2021-2022学年中考数学全真模拟试卷含解析:

    这是一份辽宁省铁岭市铁岭县重点名校2021-2022学年中考数学全真模拟试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,计算等内容,欢迎下载使用。

    江苏省盱眙县重点名校2021-2022学年中考数学全真模拟试题含解析:

    这是一份江苏省盱眙县重点名校2021-2022学年中考数学全真模拟试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,已知抛物线y=x2-2mx-4等内容,欢迎下载使用。

    安徽省滁州市凤阳县重点名校2021-2022学年中考数学全真模拟试卷含解析:

    这是一份安徽省滁州市凤阳县重点名校2021-2022学年中考数学全真模拟试卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map