中考数学考前冲刺专题《线段的垂直平分线》过关练习(含答案)
展开中考数学考前冲刺专题
《线段的垂直平分线》过关练习
一 、选择题
1.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是( )
2.如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC的长为( )
A.7cm B.10cm C.12cm D.22cm
3.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交AC于点D,交AB于点E.若BC=4,AC=8,则BD=( )
A.3 B.4 C.5 D.6
4.如图所示,在△ABC中,AB+BC=10,AC的垂直平分线分别交AB、AC于点D和点E,则△BCD的周长是( )
A.6 B.8 C.10 D.无法确定
5.如图,已知线段AB,分别以点A、点B为圆心,以大于AB的长为半径画弧,两弧交于点C和点D,作直线CD,在CD上取两点P、M,连接PA、PB、MA、MB,则下列结论一定正确的是( )
A.PA=MA B.MA=PE C.PE=BE D.PA=PB
6.如图所示,在△ABC中,AD垂直平分BC,AC=EC,点B,D,C,E在同一条直线上,则AB+DB与DE之间的数量关系是( )
A.AB+DB>DE B.AB+DB<DE C.AB+DB=DE D.无法判断
7.如图,已知AB=AC,∠A=36°,AC的垂直平分线MN交AB于D,AC于M.以下结论:
①△BCD是等腰三角形; ②射线CD是△ACB的角平分线;
③△BCD的周长C△BCD=AB+BC; ④△ADM≌△BCD.
正确的有( )
A.①② B.①③ C.②③ D.③④
8.如图,MN是线段AB的垂直平分线,C在MN外,且与A点在MN的同一侧,BC交MN于P点,则( )
A.BC>PC+AP B.BC<PC+AP C.BC=PC+AP D.BC≥PC+AP
9.如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是( )
A.10cm B.12cm C.15cm D.17cm
10.在△ABC中,AB=AC,AB的垂直平分线交AB于点D,交直线AC于点E,∠AEB=80°,那么∠EBC等于( )
A.15° B.25° C.15°或75° D.25°或85°
11.如图,∠BAC=110°若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是( ) .
A、20° B.40° C、50° D.60°
12.如图:等腰△ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为( )
A.6 B.8 C.9 D.10
二 、填空题
13.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE=40°,则∠DBC= .
14.如图,在直角△ABC中,∠BAC=90°,CB=10,AC=6,DE是AB边的垂直平分线,垂足为D,交BC于点E,连接AE,则△ACE的周长为 .
15.如图,AB+AC=7,D是AB上一点,若点D在BC的垂直平分线上,则△ACD的周长为 .
16.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE,若BE=5,BC=6,则sinC= .
三、解答题
17.如图,已知△ABC,∠C=Rt∠,AC<BC,D为BC上一点,且到A,B两点的距离相等.
(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);
(2)连结AD,若∠B=37°,求∠CAD的度数.
18.如图,在Rt△ABC中,∠C=90°,AB的中垂线DE交BC于点D,垂足为E,
且∠CAD∶∠CAB=1∶3,求∠B的度数.
19.如图,直线a、b相交于点A,C、E分别是直线b、a上两点且BC⊥a,DE⊥b,点M、N是EC、DB的中点.
求证: MN⊥BD.
20.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.
求证:直线AD是线段CE的垂直平分线.
21.如图.在△ABC中,BE是角平分线,AD⊥BE,垂足为D.
求证:∠2=∠1+∠C.
22.如图1,已知△ABC中,AB=AC,点D是△ABC外一点(与点A分别在直线BC两侧),且DB=DC,过点D作DE∥AC,交射线AB于E,连接AE交BC于F.
(1)求证:AD垂直BC;
(2)如图1,点E在线段AB上且不与B重合时,求证:DE=AE;
(3)如图2,当点E在线段AB的延长线上时,写出线段DE,AC,BE的数量关系.
0.参考答案
1.答案为:D.
2.答案为:C.
3.C
4.C
5.答案为:D.
6.C
7.答案为:B
8.答案为:C.
9.C
10.答案为:C.
11.答案为:B
12.答案为:C.
13.答案为:15°.
14.答案为:16
15.答案为:7.
16.答案为:0.8.
17.解:(1)如图,点D为所作;
(2)∵DA=DB,
∴∠DAB=∠B=37°,
∵∠BAC=∠C﹣∠B=90°﹣37°=53°,
∴∠CAD=53°﹣37°=16°.
18.解:设∠CAD=x°,
则∠CAB=3x°,∠BAD=2x°.
∵DE是AB的中垂线,
∴DA=DB,
∴∠B=∠BAD=2x°.
∵∠C=90°,
∴∠CAB+∠B=90°,
即3x+2x=90,
解得x=18,
∴∠B=2×18°=36°.
19.证明:∵BC⊥a,DE⊥b,点M是EC的中点,∴2DM=EC,2BM=EC,∴DM=BM,
∵点N是BD的中点,∴MN⊥BD.
20.证明:∵DE⊥AB,
∴∠AED=90°=∠ACB,
又∵AD平分∠BAC,
∴∠DAE=∠DAC,
∵AD=AD,
∴△AED≌△ACD,
∴AE=AC,
∵AD平分∠BAC,
∴AD⊥CE,
即直线AD是线段CE的垂直平分线.
21.证明:如图,延长AD交BC于点F,
∵BE是角平分线,AD⊥BE,
∴△ABF是等腰三角形,且∠2=∠AFB,
又∵∠AFB=∠1+∠C,
∴∠2=∠1+∠C.
22.(1)证明:∵AB=AC,DB=DC,
∴直线AD是BC的垂直平分线,
∴AD垂直BC;
(2)证明:在△ABD和△ACD中,
,
∴△ABD≌△ACD,
∴∠BAD=∠CAD,
∵DE∥AC,
∴∠EDA=∠CAD,
∴∠BAD=∠EDA,
∴DE=AE;
(3)DE=AC+BE.由(2)得,∠BAD=∠CAD,
∵DE∥AC,
∴∠EDA=∠CAD,
∴∠BAD=∠EDA,
∴DE=AE,
∵AB=AC,
∴DE=AB+BE=AC+BE.
中考数学考前冲刺专题《圆》过关练习(含答案): 这是一份中考数学考前冲刺专题《圆》过关练习(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
中考数学考前冲刺专题《相似》过关练习(含答案): 这是一份中考数学考前冲刺专题《相似》过关练习(含答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
中考数学考前冲刺专题《实数》过关练习(含答案): 这是一份中考数学考前冲刺专题《实数》过关练习(含答案),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

