2022年山东省德州市经济开发区抬头寺中学中考数学押题卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.下列几何体中,俯视图为三角形的是( )
A. B. C. D.
2.某种超薄气球表面的厚度约为,这个数用科学记数法表示为( )
A. B. C. D.
3.如图,由矩形和三角形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m2,广告牌所占的面积是 30m2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m2,设矩形面积是xm2,三角形面积是ym2,则根据题意,可列出二元一次方程组为( )
A. B. C. D.
4.如图,为的直径,为上两点,若,则的大小为( ).
A.60° B.50° C.40° D.20°
5.抛物线y=ax2﹣4ax+4a﹣1与x轴交于A,B两点,C(x1,m)和D(x2,n)也是抛物线上的点,且x1<2<x2,x1+x2<4,则下列判断正确的是( )
A.m<n B.m≤n C.m>n D.m≥n
6.用加减法解方程组时,若要求消去,则应( )
A. B. C. D.
7.如图,在扇形CAB中,CA=4,∠CAB=120°,D为CA的中点,P为弧BC上一动点(不与C,B重合),则2PD+PB的最小值为( )
A. B. C.10 D.
8.函数y=ax2+1与(a≠0)在同一平面直角坐标系中的图象可能是( )
A. B. C. D.
9.今年3月5日,十三届全国人大一次会议在人民大会堂开幕,会议听取了国务院总理李克强关于政府工作的报告,其中表示,五年来,人民生活持续改善,脱贫攻坚取得决定性进展,贫困人口减少6800多万,易地扶贫搬迁830万人,贫困发生率由10.2%下降到3.1%,将830万用科学记数法表示为( )
A.83×105 B.0.83×106 C.8.3×106 D.8.3×107
10.化简的结果是( )
A.﹣ B.﹣ C.﹣ D.﹣
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若x2+kx+81是完全平方式,则k的值应是________.
12.如图,矩形OABC的边OA,OC分别在轴、轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应),若AB=1,反比例函数的图象恰好经过点A′,B,则的值为_________.
13.如图,已知反比例函数y=(x>0)的图象经过Rt△OAB斜边OB的中点C,且与直角边AB交于点D,连接OD,若点B的坐标为(2,3),则△OAD的面积为_____.
14.股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是_____.
15.因式分解:3a3﹣3a=_____.
16.分解因式:4a2-4a+1=______.
三、解答题(共8题,共72分)
17.(8分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C(0,2)
(1)求抛物线的表达式;
(2)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线的对称轴上是否存在点P,使△BMP与△ABD相似?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.
18.(8分)已知:如图,在△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E为的中点.
求证:∠ACD=∠DEC;(2)延长DE、CB交于点P,若PB=BO,DE=2,求PE的长
19.(8分)如图,矩形中,对角线,相交于点,且,.动点,分别从点,同时出发,运动速度均为lcm/s.点沿运动,到点停止.点沿运动,点到点停留4后继续运动,到点停止.连接,,,设的面积为(这里规定:线段是面积为0的三角形),点的运动时间为.
(1)求线段的长(用含的代数式表示);
(2)求时,求与之间的函数解析式,并写出的取值范围;
(3)当时,直接写出的取值范围.
20.(8分)如图1,在圆中,垂直于弦,为垂足,作,与的延长线交于.
(1)求证:是圆的切线;
(2)如图2,延长,交圆于点,点是劣弧的中点,,,求的长 .
21.(8分)如图1,在平面直角坐标系中,一次函数y=﹣1x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.
(1)线段AB,BC,AC的长分别为AB= ,BC= ,AC= ;
(1)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图1.
请从下列A、B两题中任选一题作答,我选择 题.
A:①求线段AD的长;
②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.
B:①求线段DE的长;
②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
22.(10分)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.
(1)求证:直线CD是⊙O的切线;
(2)若DE=2BC,AD=5,求OC的值.
23.(12分)如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE=BC.如果AC=6,求AE的长;设,,求向量(用向量、表示).
24.如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:△ACE≌△BCD;若AD=5,BD=12,求DE的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
俯视图是从上面所看到的图形,可根据各几何体的特点进行判断.
【详解】
A.圆锥的俯视图是圆,中间有一点,故本选项不符合题意,
B.几何体的俯视图是长方形,故本选项不符合题意,
C.三棱柱的俯视图是三角形,故本选项符合题意,
D.圆台的俯视图是圆环,故本选项不符合题意,
故选C.
【点睛】
此题主要考查了由几何体判断三视图,正确把握观察角度是解题关键.
2、A
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
,
故选:A.
【点睛】
本题考查了用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
3、A
【解析】
根据题意找到等量关系:①矩形面积+三角形面积﹣阴影面积=30;②(矩形面积﹣阴影面积)﹣(三角形面积﹣阴影面积)=4,据此列出方程组.
【详解】
依题意得:
.
故选A.
【点睛】
考查了由实际问题抽象出二元一次方程组.根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.
4、B
【解析】
根据题意连接AD,再根据同弧的圆周角相等,即可计算的的大小.
【详解】
解:连接,
∵为的直径,
∴.
∵,
∴,
∴.
故选:B.
【点睛】
本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.
5、C
【解析】
分析:将一般式配方成顶点式,得出对称轴方程根据抛物线与x轴交于两点,得出求得
距离对称轴越远,函数的值越大,根据判断出它们与对称轴之间的关系即可判定.
详解:∵
∴此抛物线对称轴为
∵抛物线与x轴交于两点,
∴当时,得
∵
∴
∴
故选C.
点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大,
6、C
【解析】
利用加减消元法消去y即可.
【详解】
用加减法解方程组时,若要求消去y,则应①×5+②×3,
故选C
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
7、D
【解析】
如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根据勾股定理得到PP′=,求得2PD+PB≥4,于是得到结论.
【详解】
如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,
则∠1=∠2,
∵=2,
∴△APD∽△ABP′,
∴BP′=2PD,
∴2PD+PB=BP′+PB≥PP′,
∴PP′=,
∴2PD+PB≥4,
∴2PD+PB的最小值为4,
故选D.
【点睛】
本题考查了轴对称-最短距离问题,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.
8、B
【解析】
试题分析:分a>0和a<0两种情况讨论:
当a>0时,y=ax2+1开口向上,顶点坐标为(0,1);位于第一、三象限,没有选项图象符合;
当a<0时,y=ax2+1开口向下,顶点坐标为(0,1);位于第二、四象限,B选项图象符合.
故选B.
考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用.
9、C
【解析】
科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1≤| a| <10|)的记数法.
【详解】
830万=8300000=8.3×106.
故选C
【点睛】
本题考核知识点:科学记数法.解题关键点:理解科学记数法的意义.
10、C
【解析】
试题解析:原式=.
故选C.
考点:二次根式的乘除法.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、±1
【解析】
试题分析:利用完全平方公式的结构特征判断即可确定出k的值.
解:∵x2+kx+81是完全平方式,
∴k=±1.
故答案为±1.
考点:完全平方式.
12、
【解析】
解:∵四边形ABCO是矩形,AB=1,
∴设B(m,1),
∴OA=BC=m,
∵四边形OA′B′D与四边形OABD关于直线OD对称,
∴OA′=OA=m,∠A′OD=∠AOD=30°,
∴∠A′OA=60°,
过A′作A′E⊥OA于E,
∴OE=m,A′E=m,
∴A′(m,m),
∵反比例函数y=(k≠0)的图象恰好经过点A′,B,
∴m•m=m,
∴m=,
∴k=.
【点睛】
本题考查反比例函数图象上点的坐标特征;矩形的性质,利用数形结合思想解题是关键.
13、.
【解析】
由点B的坐标为(2,3),而点C为OB的中点,则C点坐标为(1,1.5),利用待定系数法可得到k=1.5,然后利用k的几何意义即可得到△OAD的面积.
【详解】
∵点B的坐标为(2,3),点C为OB的中点,
∴C点坐标为(1,1.5),
∴k=1×1.5=1.5,即反比例函数解析式为y=,
∴S△OAD=×1.5=.
故答案为:.
【点睛】
本题考查了反比例函数的几何意义,一般的,从反比例函数(k为常数,k≠0)图像上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数,以点P及点P的一个垂足和坐标原点为顶点的三角形的面积等于 .
14、.
【解析】
股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,设这两天此股票股价的平均增长率为x,每天相对于前一天就上涨到1+x,由此列出方程解答即可.
【详解】
设这两天此股票股价的平均增长率为x,由题意得
(1﹣10%)(1+x)2=1.
故答案为:(1﹣10%)(1+x)2=1.
【点睛】
本题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为
15、3a(a+1)(a﹣1).
【解析】
首先提取公因式3a,进而利用平方差公式分解因式得出答案.
【详解】
解:原式=3a(a2﹣1)
=3a(a+1)(a﹣1).
故答案为3a(a+1)(a﹣1).
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
16、
【解析】
根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.
【详解】
解:.
故答案为.
【点睛】
本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握.
三、解答题(共8题,共72分)
17、 (1)y=﹣x2+x+2;(2)满足条件的点P的坐标为(,)或(,﹣)或(,5)或(,﹣5).
【解析】
(1)利用待定系数法求抛物线的表达式;
(2)使△BMP与△ABD相似的有三种情况,分别求出这三个点的坐标.
【详解】
(1)∵抛物线与x轴交于点A(﹣1,0),B(4,0),
∴设抛物线的解析式为y=a(x+1)(x﹣4),
∵抛物线与y轴交于点C(0,2),
∴a×1×(﹣4)=2,
∴a=﹣,
∴抛物线的解析式为y=﹣(x+1)(x﹣4)=﹣x2+x+2;
(2)如图1,连接CD,∵抛物线的解析式为y=﹣x2+x+2,
∴抛物线的对称轴为直线x=,
∴M(,0),∵点D与点C关于点M对称,且C(0,2),
∴D(3,﹣2),
∵MA=MB,MC=MD,
∴四边形ACBD是平行四边形,
∵A(﹣1,0),B(4,0),C(3,﹣22),
∴AB2=25,BD2=(4﹣1)2+22=5,AD2=(3+1)2+22=20,
∴AD2+BD2=AB2,
∴△ABD是直角三角形,
∴∠ADB=90°,
设点P(,m),
∴MP=|m|,
∵M(,0),B(4,0),
∴BM=,
∵△BMP与△ABD相似,
∴①当△BMP∽ADB时,
∴,
∴,
∴m=±,
∴P(,)或(,﹣),
②当△BMP∽△BDA时,
,
∴,
∴m=±5,
∴P(,5)或(,﹣5),
即:满足条件的点P的坐标为P(,)或(,﹣)或(,5)或(,﹣5).
【点睛】
本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.
18、(1)见解析;(2)PE=4.
【解析】
(1)根据同角的余角相等得到∠ACD=∠B,然后由圆周角定理可得结论;
(2)连结OE,根据圆周角定理和等腰三角形的性质证明OE∥CD,然后由△POE∽△PCD列出比例式,求解即可.
【详解】
解:(1)证明:∵BC是⊙O的直径,
∴∠BDC=90°,∴∠BCD+∠B=90°,
∵∠ACB=90°,
∴∠BCD+∠ACD=90°,
∴∠ACD=∠B,
∵∠DEC=∠B,
∴∠ACD=∠DEC
(2)证明:连结OE
∵E为BD弧的中点.
∴∠DCE=∠BCE
∵OC=OE
∴∠BCE=∠OEC
∴∠DCE=∠OEC
∴OE∥CD
∴△POE∽△PCD,
∴
∵PB=BO,DE=2
∴PB=BO=OC
∴
∴
∴PE=4
【点睛】
本题是圆的综合题,主要考查了圆周角定理、等腰三角形的判定和性质、相似三角形的判定与性质,熟练掌握圆的相关知识和相似三角形的性质是解题的关键.
19、(1)当0<x≤1时,PD=1-x,当1<x≤14时,PD=x-1.
(2)y=;(3)5≤x≤9
【解析】
(1)分点P在线段CD或在线段AD上两种情形分别求解即可.
(2)分三种情形:①当5≤x≤1时,如图1中,根据y=S△DPB,求解即可.②当1<x≤9时,如图2中,根据y=S△DPB,求解即可.③9<x≤14时,如图3中,根据y=S△APQ+S△ABQ-S△PAB计算即可.
(3)根据(2)中结论即可判断.
【详解】
解:(1)当0<x≤1时,PD=1-x,
当1<x≤14时,PD=x-1.
(2)①当5≤x≤1时,如图1中,
∵四边形ABCD是矩形,
∴OD=OB,
∴y=S△DPB=ו(1-x)•6=(1-x)=12-x.
②当1<x≤9时,如图2中,y=S△DPB=×(x-1)×1=2x-2.
③9<x≤14时,如图3中,y=S△APQ+S△ABQ-S△PAB=•(14-x)•(x-4)+×1×(tx-4)-×1×(14-x)=-x2+x-11.
综上所述,y=.
(3)由(2)可知:当5≤x≤9时,y=S△BDP.
【点睛】
本题属于四边形综合题,考查了矩形的性质,三角形的面积等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.
20、(1)详见解析;(2)
【解析】
(1)连接OA,利用切线的判定证明即可;
(2)分别连结OP、PE、AE,OP交AE于F点,根据勾股定理解答即可.
【详解】
解:(1)如图,连结OA,
∵OA=OB,OC⊥AB,
∴∠AOC=∠BOC,
又∠BAD=∠BOC,
∴∠BAD=∠AOC
∵∠AOC+∠OAC=90°,
∴∠BAD+∠OAC=90°,
∴OA⊥AD,
即:直线AD是⊙O的切线;
(2)分别连结OP、PE、AE,OP交AE于F点,
∵BE是直径,
∴∠EAB=90°,
∴OC∥AE,
∵OB=,
∴BE=13
∵AB=5,在直角△ABE中,AE=12,EF=6,FP=OP-OF=-=4
在直角△PEF中,FP=4,EF=6,PE2=16+36=52,
在直角△PEB中,BE=13,PB2=BE2-PE2,
PB==3.
【点睛】
本题考查了切线的判定,勾股定理,正确的作出辅助线是解题的关键.
21、(1)2,3,3;(1)①AD=5;②P(0,1)或(0,2).
【解析】
(1)先确定出OA=3,OC=2,进而得出AB=2,BC=3,利用勾股定理即可得出AC;
(1)A.①利用折叠的性质得出BD=2﹣AD,最后用勾股定理即可得出结论;
②分三种情况利用方程的思想即可得出结论;
B.①利用折叠的性质得出AE,利用勾股定理即可得出结论;
②先判断出∠APC=90°,再分情况讨论计算即可.
【详解】
解:(1)∵一次函数y=﹣1x+2的图象与x轴,y轴分别交于点A,点C,
∴A(3,0),C(0,2),
∴OA=3,OC=2.
∵AB⊥x轴,CB⊥y轴,∠AOC=90°,
∴四边形OABC是矩形,
∴AB=OC=2,BC=OA=3.
在Rt△ABC中,根据勾股定理得,AC==3.
故答案为2,3,3;
(1)选A.
①由(1)知,BC=3,AB=2,由折叠知,CD=AD.
在Rt△BCD中,BD=AB﹣AD=2﹣AD,
根据勾股定理得,CD1=BC1+BD1,
即:AD1=16+(2﹣AD)1,
∴AD=5;
②由①知,D(3,5),设P(0,y).
∵A(3,0),
∴AP1=16+y1,DP1=16+(y﹣5)1.
∵△APD为等腰三角形,
∴分三种情况讨论:
Ⅰ、AP=AD,
∴16+y1=15,
∴y=±3,
∴P(0,3)或(0,﹣3);
Ⅱ、AP=DP,
∴16+y1=16+(y﹣5)1,
∴y=,
∴P(0,);
Ⅲ、AD=DP,15=16+(y﹣5)1,
∴y=1或2,
∴P(0,1)或(0,2).
综上所述:P(0,3)或(0,﹣3)或P(0,)或P(0,1)或(0,2).
选B.①由A①知,AD=5,由折叠知,AE=AC=1,DE⊥AC于E.
在Rt△ADE中,DE==;
②∵以点A,P,C为顶点的三角形与△ABC全等,
∴△APC≌△ABC,或△CPA≌△ABC,
∴∠APC=∠ABC=90°.
∵四边形OABC是矩形,
∴△ACO≌△CAB,
此时,符合条件,点P和点O重合,即:P(0,0);
如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,
∴,
∴,
∴AN=,
过点N作NH⊥OA,
∴NH∥OA,
∴△ANH∽△ACO,
∴,
∴,
∴NH=,AH=,
∴OH=,
∴N(),
而点P1与点O关于AC对称,
∴P1(),
同理:点B关于AC的对称点P1,
同上的方法得,P1(﹣).
综上所述:满足条件的点P的坐标为:(0,0),(),(﹣).
【点睛】
本题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(1)的关键是利用分类讨论的思想解决问题.
22、(1)证明见解析;(2).
【解析】
试题分析:(1)首选连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线;
(2)由△COD≌△COB.可得CD=CB,即可得DE=2CD,易证得△EDA∽△ECO,然后由相似三角形的对应边成比例,求得AD:OC的值.
试题解析:(1)连结DO.
∵AD∥OC,
∴∠DAO=∠COB,∠ADO=∠COD.
又∵OA=OD,
∴∠DAO=∠ADO,
∴∠COD=∠COB. 3分
又∵CO=CO, OD=OB
∴△COD≌△COB(SAS) 4分
∴∠CDO=∠CBO=90°.
又∵点D在⊙O上,
∴CD是⊙O的切线.
(2)∵△COD≌△COB.
∴CD=CB.
∵DE=2BC,
∴ED=2CD.
∵AD∥OC,
∴△EDA∽△ECO.
∴,
∴.
考点:1.切线的判定2.全等三角形的判定与性质3.相似三角形的判定与性质.
23、(1)1;(2).
【解析】
(1)由平行线截线段成比例求得AE的长度;
(2)利用平面向量的三角形法则解答.
【详解】
(1)如图,
∵DE∥BC,且DE=BC,
∴.
又AC=6,
∴AE=1.
(2)∵,,
∴.
又DE∥BC,DE=BC,
∴
【点睛】
考查了平面向量,需要掌握平面向量的三角形法则和平行向量的定义.
24、(1)证明见解析(2)13
【解析】
(1)先根据同角的余角相等得到∠ACE=∠BCD,再结合等腰直角三角形的性质即可证得结论;
(2)根据全等三角形的性质可得AE=BD,∠EAC=∠B=45°,即可证得△AED是直角三角形,再利用勾股定理即可求出DE的长.
【详解】
(1)∵△ACB和△ECD都是等腰直角三角形
∴AC=BC,EC=DC,∠ACB=∠ECD=90°
∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA
∴∠ACE=∠BCD
∴△ACE≌△BCD(SAS);
(2)∵△ACB和△ECD都是等腰直角三角形
∴∠BAC=∠B=45°
∵△ACE≌△BCD
∴AE=BD=12,∠EAC=∠B=45°
∴∠EAD=∠EAC+∠BAC=90°,
∴△EAD是直角三角形
【点睛】
解答本题的关键是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等.
山东省德州市经济开发区抬头寺镇中学2023-2024学年九上数学期末学业质量监测模拟试题含答案: 这是一份山东省德州市经济开发区抬头寺镇中学2023-2024学年九上数学期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,已知一组数据等内容,欢迎下载使用。
山东省德州市经济开发区抬头寺中学2023-2024学年九年级数学第一学期期末达标测试试题含答案: 这是一份山东省德州市经济开发区抬头寺中学2023-2024学年九年级数学第一学期期末达标测试试题含答案,共7页。试卷主要包含了点P关于原点的对称点的坐标为,下列四个数中是负数的是等内容,欢迎下载使用。
2023-2024学年山东省德州市经济开发区抬头寺中学八年级数学第一学期期末联考模拟试题含答案: 这是一份2023-2024学年山东省德州市经济开发区抬头寺中学八年级数学第一学期期末联考模拟试题含答案,共7页。试卷主要包含了,是两个连续整数,若,则,计算的结果是等内容,欢迎下载使用。