终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年吉林省蛟河市朝鲜族中学中考二模数学试题含解析

    立即下载
    加入资料篮
    2022年吉林省蛟河市朝鲜族中学中考二模数学试题含解析第1页
    2022年吉林省蛟河市朝鲜族中学中考二模数学试题含解析第2页
    2022年吉林省蛟河市朝鲜族中学中考二模数学试题含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年吉林省蛟河市朝鲜族中学中考二模数学试题含解析

    展开

    这是一份2022年吉林省蛟河市朝鲜族中学中考二模数学试题含解析,共22页。试卷主要包含了下列计算,正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(共10小题,每小题3分,共30分)
    1.如果,那么的值为( )
    A.1 B.2 C. D.
    2.如图,在射线AB上顺次取两点C,D,使AC=CD=1,以CD为边作矩形CDEF,DE=2,将射线AB绕点A沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF的边CF,DE于点G,H.若CG=x,EH=y,则下列函数图象中,能反映y与x之间关系的是(  )

    A. B. C. D.
    3.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为(  )

    A.6.06×104立方米/时 B.3.136×106立方米/时
    C.3.636×106立方米/时 D.36.36×105立方米/时
    4.如图所示,点E是正方形ABCD内一点,把△BEC绕点C旋转至△DFC位置,则∠EFC的度数是( )

    A.90° B.30° C.45° D.60°
    5.如图,在⊙O中,弦AB=CD,AB⊥CD于点E,已知CE•ED=3,BE=1,则⊙O的直径是(  )

    A.2 B. C.2 D.5
    6.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正确的是(  )
    A.a=b•cosA B.c=a•sinA C.a•cotA=b D.a•tanA=b
    7.下列计算,正确的是(  )
    A.a2•a2=2a2 B.a2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+1
    8.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加1600,设扩大后的正方形绿地边长为xm,下面所列方程正确的是( )
    A.x(x-60)=1600
    B.x(x+60)=1600
    C.60(x+60)=1600
    D.60(x-60)=1600
    9.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为(  )
    A. B. C. D.
    10.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具),以下是甲、乙两同学的作业:

    甲:①连接OP,作OP的垂直平分线l,交OP于点A;
    ②以点A为圆心、OA为半径画弧、交⊙O于点M;
    ③作直线PM,则直线PM即为所求(如图1).
    乙:①让直角三角板的一条直角边始终经过点P;
    ②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;
    ③作直线PM,则直线PM即为所求(如图2).
    对于两人的作业,下列说法正确的是( )
    A.甲乙都对 B.甲乙都不对
    C.甲对,乙不对 D.甲不对,已对
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,正方形ABCD和正方形OEFG中, 点A和点F的坐标分别为 (3,2),(-1,-1),则两个正方形的位似中心的坐标是_________.

    12.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则BE:BC的值为_________.

    13.如图,为的直径,与相切于点,弦.若,则______.

    14.如图,AE是正八边形ABCDEFGH的一条对角线,则∠BAE= °.

    15.如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC的两条栈道AB,AC.若∠B=56°,∠C=45°,则游客中心A到观景长廊BC的距离AD的长约为_____米.(sin56°≈0.8,tan56°≈1.5)

    16.反比例函数的图象经过点和,则 ______ .
    三、解答题(共8题,共72分)
    17.(8分)阅读材料:各类方程的解法
    求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.
    用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.问题:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;拓展:用“转化”思想求方程的解;应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.

    18.(8分)小马虎做一道数学题,“已知两个多项式,,试求.”其中多项式的二次项系数印刷不清楚.小马虎看答案以后知道,请你替小马虎求出系数“”;在(1)的基础上,小马虎已经将多项式正确求出,老师又给出了一个多项式,要求小马虎求出的结果.小马虎在求解时,误把“”看成“”,结果求出的答案为.请你替小马虎求出“”的正确答案.
    19.(8分)小强想知道湖中两个小亭A、B之间的距离,他在与小亭A、B位于同一水平面且东西走向的湖边小道I上某一观测点M处,测得亭A在点M的北偏东30°,亭B在点M的北偏东60°,当小明由点M沿小道I向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B恰好位于点Q的正北方向,根据以上测量数据,请你帮助小强计算湖中两个小亭A、B之间的距离.

    20.(8分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.求甲、乙两种型号设备的价格;该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.
    21.(8分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,3),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.

    (Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;
    (Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;
    (Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).
    22.(10分)某农场用2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷?
    23.(12分)先化简,再求值:÷,其中m是方程x2+2x-3=0的根.
    24.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.
    (1)求证:∠G=∠CEF;
    (2)求证:EG是⊙O的切线;
    (3)延长AB交GE的延长线于点M,若tanG =,AH=3,求EM的值.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    先对原分式进行化简,再寻找化简结果与已知之间的关系即可得出答案.
    【详解】



    故选:D.
    【点睛】
    本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.
    2、D
    【解析】
    ∵四边形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴,
    ∵AC=CD=1,∴AD=2,∴,∴DH=2x,∵DE=2,∴y=2﹣2x,
    ∵0°<α<45°,∴0<x<1,
    故选D.
    【点睛】本题主要考查了旋转、相似等知识,解题的关键是根据已知得出△ACG∽△ADH.
    3、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    1010×360×24=3.636×106立方米/时,
    故选C.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    4、C
    【解析】
    根据正方形的每一个角都是直角可得∠BCD=90°,再根据旋转的性质求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根据等腰直角三角形的性质解答.
    【详解】
    ∵四边形ABCD是正方形,
    ∴∠BCD=90°,
    ∵△BEC绕点C旋转至△DFC的位置,
    ∴∠ECF=∠BCD=90°,CE=CF,
    ∴△CEF是等腰直角三角形,
    ∴∠EFC=45°.
    故选:C.
    【点睛】
    本题目是一道考查旋转的性质问题——每对对应点到旋转中心的连线的夹角都等于旋转角度,每对对应边相等,故 为等腰直角三角形.
    5、C
    【解析】
    作OH⊥AB于H,OG⊥CD于G,连接OA,根据相交弦定理求出EA,根据题意求出CD,根据垂径定理、勾股定理计算即可.
    【详解】
    解:作OH⊥AB于H,OG⊥CD于G,连接OA,
    由相交弦定理得,CE•ED=EA•BE,即EA×1=3,
    解得,AE=3,
    ∴AB=4,
    ∵OH⊥AB,
    ∴AH=HB=2,
    ∵AB=CD,CE•ED=3,
    ∴CD=4,
    ∵OG⊥CD,
    ∴EG=1,
    由题意得,四边形HEGO是矩形,
    ∴OH=EG=1,
    由勾股定理得,OA=,
    ∴⊙O的直径为,
    故选C.

    【点睛】
    此题考查了相交弦定理、垂径定理、勾股定理、矩形的判定与性质;根据图形作出相应的辅助线是解本题的关键.
    6、C
    【解析】
    ∵∠C=90°,
    ∴cosA=,sinA= ,tanA=,cotA=,
    ∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,
    ∴只有选项C正确,
    故选C.
    【点睛】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键.
    7、C
    【解析】
    解:A.故错误;
    B. 故错误;
    C.正确;
    D.
    故选C.
    【点睛】
    本题考查合并同类项,同底数幂相乘;幂的乘方,以及完全平方公式的计算,掌握运算法则正确计算是解题关键.
    8、A
    【解析】
    试题分析:根据题意可得扩建的部分相当于一个长方形,这个长方形的长和宽分别为x米和(x-60)米,根据长方形的面积计算法则列出方程.
    考点:一元二次方程的应用.
    9、A
    【解析】
    ∵在Rt△ABC中,∠C=90°,AB=4,AC=1,
    ∴BC== ,
    则cosB== ,
    故选A
    10、A
    【解析】
    (1)连接OM,OA,连接OP,作OP的垂直平分线l可得OA=MA=AP,进而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切线,(1)直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切线.
    【详解】
    证明:(1)如图1,连接OM,OA.
    ∵连接OP,作OP的垂直平分线l,交OP于点A,∴OA=AP.
    ∵以点A为圆心、OA为半径画弧、交⊙O于点M;
    ∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切线;
    (1)如图1.
    ∵直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切线.
    故两位同学的作法都正确.
    故选A.

    【点睛】
    本题考查了复杂的作图,重点是运用切线的判定来说明作法的正确性.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、(1,0);(﹣5,﹣2).
    【解析】
    本题主要考查位似变换中对应点的坐标的变化规律.因而本题应分两种情况讨论,一种是当E和C是对应顶点,G和A是对应顶点;另一种是A和E是对应顶点,C和G是对应顶点.
    【详解】
    ∵正方形ABCD和正方形OEFG中A和点F的坐标分别为(3,2),(-1,-1),
    ∴E(-1,0)、G(0,-1)、D(5,2)、B(3,0)、C(5,0),
    (1)当E和C是对应顶点,G和A是对应顶点时,位似中心就是EC与AG的交点,
    设AG所在直线的解析式为y=kx+b(k≠0),
    ∴,解得.
    ∴此函数的解析式为y=x-1,与EC的交点坐标是(1,0);
    (2)当A和E是对应顶点,C和G是对应顶点时,位似中心就是AE与CG的交点,
    设AE所在直线的解析式为y=kx+b(k≠0),
    ,解得,
    故此一次函数的解析式为…①,
    同理,设CG所在直线的解析式为y=kx+b(k≠0),
    ,解得,
    故此直线的解析式为…②
    联立①②得
    解得,故AE与CG的交点坐标是(-5,-2).
    故答案为:(1,0)、(-5,-2).
    12、1:4
    【解析】
    由S△BDE:S△CDE=1:3,得到 ,于是得到 .
    【详解】
    解: 两个三角形同高,底边之比等于面积比.


    故答案为
    【点睛】
    本题考查了三角形的面积,比例的性质等知识,知道等高不同底的三角形的面积的比等于底的比是解题的关键.
    13、1
    【解析】
    利用切线的性质得,利用直角三角形两锐角互余可得,再根据平行线的性质得到,,然后根据等腰三角形的性质求出的度数即可.
    【详解】
    ∵与相切于点,
    ∴AC⊥AB,
    ∴,
    ∴,
    ∵,
    ∴,,
    ∵,
    ∴,
    ∴.
    故答案为1.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
    14、67.1
    【解析】
    试题分析:∵图中是正八边形,
    ∴各内角度数和=(8﹣2)×180°=1080°,
    ∴∠HAB=1080°÷8=131°,
    ∴∠BAE=131°÷2=67.1°.
    故答案为67.1.
    考点:多边形的内角
    15、60
    【解析】
    根据题意和图形可以分别表示出AD和CD的长,从而可以求得AD的长,本题得以解决.
    【详解】
    ∵∠B=56°,∠C=45°,∠ADB=∠ADC=90°,BC=BD+CD=100米, ∴BD=,CD=,
    ∴+=100, 解得,AD≈60
    考点:解直角三角形的应用.
    16、-1
    【解析】
    先把点(1,6)代入反比例函数y=,求出k的值,进而可得出反比例函数的解析式,再把点(m,-3)代入即可得出m的值.
    【详解】
    解:∵反比例函数y=的图象经过点(1,6),
    ∴6=,解得k=6,
    ∴反比例函数的解析式为y=.
    ∵点(m,-3)在此函数图象上上,
    ∴-3=,解得m=-1.
    故答案为-1.
    【点睛】
    本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.

    三、解答题(共8题,共72分)
    17、 (1)-2,1;(2)x=3;(3)4m.
    【解析】
    (1)因式分解多项式,然后得结论;
    (2)两边平方,把无理方程转化为整式方程,求解,注意验根;
    (3)设AP的长为xm,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,
    【详解】
    解:(1),


    所以或或
    ,,;
    故答案为,1;
    (2),
    方程的两边平方,得



    ,,
    当时,,
    所以不是原方程的解.
    所以方程的解是;
    (3)因为四边形是矩形,
    所以,
    设,则
    因为,



    两边平方,得
    整理,得
    两边平方并整理,得

    所以.
    经检验,是方程的解.
    答:的长为.
    【点睛】
    考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.
    18、(1)-3; (2)“A-C”的正确答案为-7x2-2x+2.
    【解析】
    (1)根据整式加减法则可求出二次项系数;
    (2)表示出多项式,然后根据的结果求出多项式,计算即可求出答案.
    【详解】
    (1)由题意得,, A+2B=(4+)+2-8, 4+=1,=-3,即系数为-3.
    (2)A+C=,且A=,C=4,AC=
    【点睛】
    本题主要考查了多项式加减运算,熟练掌握运算法则是解题关键.
    19、1m
    【解析】
    连接AN、BQ,过B作BE⊥AN于点E.在Rt△AMN和在Rt△BMQ中,根据三角函数就可以求得AN,BQ,求得NQ,AE的长,在直角△ABE中,依据勾股定理即可求得AB的长.
    【详解】
    连接AN、BQ,

    ∵点A在点N的正北方向,点B在点Q的正北方向,
    ∴AN⊥l,BQ⊥l,
    在Rt△AMN中:tan∠AMN=,
    ∴AN=1,
    在Rt△BMQ中:tan∠BMQ=,
    ∴BQ=30,
    过B作BE⊥AN于点E,
    则BE=NQ=30,
    ∴AE=AN-BQ=30,
    在Rt△ABE中,
    AB2=AE2+BE2,
    AB2=(30)2+302,
    ∴AB=1.
    答:湖中两个小亭A、B之间的距离为1米.
    【点睛】
    本题考查勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
    20、(1)甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)有6种购买方案.(3)最省钱的购买方案为,选购甲型设备4台,乙型设备6台.
    【解析】
    (1)设甲、乙两种型号设备每台的价格分别为万元和万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可;
    (2)设购买甲型设备台,乙型设备台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m的值,即可确定方案;
    (3)因为公司要求每月的产量不低于2040吨,据此可得关于m的不等式,解之即可由m的值确定方案,然后进行比较,做出选择即可.
    【详解】
    (1)设甲、乙两种型号设备每台的价格分别为万元和万元,
    由题意得:,
    解得:,
    则甲,乙两种型号设备每台的价格分别为12万元和10万元;
    (2)设购买甲型设备台,乙型设备台,
    则,
    ∴,
    ∵取非负整数,
    ∴,
    ∴有6种购买方案;
    (3)由题意:,
    ∴,
    ∴为4或5,
    当时,购买资金为:(万元),
    当时,购买资金为:(万元),
    则最省钱的购买方案是选购甲型设备4台,乙型设备6台.
    【点睛】
    本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系、不等关系列出方程组与不等式是解题的关键.
    21、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).
    【解析】
    (1)设OD为x,则BD=AD=3,在RT△ODA中应用勾股定理即可求解;
    (1)由题意易证△BDC∽△BOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;
    (3)过点C作CE⊥AO于E,由A、B坐标及C的横坐标为1,利用相似可求解出BC、CE、OC等长度;分点B’在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C,再利用特殊角的三角函数可逐一求解.
    【详解】
    (Ⅰ)设OD为x,
    ∵点A(3,0),点B(0,),
    ∴AO=3,BO=
    ∴AB=6
    ∵折叠
    ∴BD=DA
    在Rt△ADO中,OA1+OD1=DA1.
    ∴9+OD1=(﹣OD)1.
    ∴OD=
    ∴D(0,)
    (Ⅱ)∵折叠
    ∴∠BDC=∠CDO=90°
    ∴CD∥OA
    ∴且BD=AC,

    ∴BD=﹣18
    ∴OD=﹣(﹣18)=18﹣
    ∵tan∠ABO=,
    ∴∠ABC=30°,即∠BAO=60°
    ∵tan∠ABO=,
    ∴CD=11﹣6
    ∴D(11﹣6,11﹣18)
    (Ⅲ)如图:过点C作CE⊥AO于E

    ∵CE⊥AO
    ∴OE=1,且AO=3
    ∴AE=1,
    ∵CE⊥AO,∠CAE=60°
    ∴∠ACE=30°且CE⊥AO
    ∴AC=1,CE=
    ∵BC=AB﹣AC
    ∴BC=6﹣1=4
    若点B'落在A点右边,
    ∵折叠
    ∴BC=B'C=4,CE=,CE⊥OA
    ∴B'E=
    ∴OB'=1+
    ∴B'(1+,0)
    若点B'落在A点左边,
    ∵折叠
    ∴BC=B'C=4,CE=,CE⊥OA
    ∴B'E=
    ∴OB'=﹣1
    ∴B'(1﹣,0)
    综上所述:B'(1+,0),(1﹣,0)
    【点睛】
    本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B’点的两种情况是解题关键.
    22、1台大收割机和1台小收割机每小时各收割小麦0.4hm2和0.2hm2.
    【解析】
    此题可设1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,根据题中的等量关系列出二元一次方程组解答即可
    【详解】
    设1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷
    根据题意可得
    解得
    答:每台大小收割机每小时分别收割0.4公顷和0.2公顷.
    【点睛】
    此题主要考查了二元一次方程组的实际应用,解题关键在于弄清题意,找到合适的等量关系
    23、原式=,当m=l时,原式=
    【解析】
    先通分计算括号里的,再计算括号外的,化为最简,由于m是方程x2+3x-1=0的根,那么m2+3m-1=0,可得m2+3m的值,再把m2+3m的值整体代入化简后的式子,计算即可.
    解:原式=
    ∵x2+2x-3=0, ∴x1=-3,x2 =1
    ∵‘m是方程x2 +2x-3=0的根, ∴m=-3或m=1
    ∵m+3≠0, ∴.m≠-3, ∴m=1
    当m=l时,原式:
    “点睛”本题考查了分式的化简求值、一元二次方程的解,解题的关键是通分、约分,以及分子分母的因式分解、整体代入.
    24、(1)证明见解析;(2)证明见解析;(3).
    【解析】
    试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;
    (2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;
    (3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得,由此即可解决问题;
    试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.

    (2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.

    (3)解:如图3中,连接OC.设⊙O的半径为r.

    在Rt△AHC中,tan∠ACH=tan∠G==,∵AH=,∴HC=,在Rt△HOC中,∵OC=r,OH=r﹣,HC=,∴,∴r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴,∴,∴EM=.
    点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.

    相关试卷

    2023-2024学年吉林省蛟河市朝鲜族中学九上数学期末质量检测试题含答案:

    这是一份2023-2024学年吉林省蛟河市朝鲜族中学九上数学期末质量检测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    2023-2024学年吉林省蛟河市朝鲜族中学九上数学期末学业水平测试模拟试题含答案:

    这是一份2023-2024学年吉林省蛟河市朝鲜族中学九上数学期末学业水平测试模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,已知反比例函数的图象经过点等内容,欢迎下载使用。

    吉林省蛟河市朝鲜族中学2023-2024学年数学八上期末综合测试模拟试题含答案:

    这是一份吉林省蛟河市朝鲜族中学2023-2024学年数学八上期末综合测试模拟试题含答案,共8页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map