|试卷下载
搜索
    上传资料 赚现金
    2022届广东省珠海市香洲区前山中学中考数学考前最后一卷含解析
    立即下载
    加入资料篮
    2022届广东省珠海市香洲区前山中学中考数学考前最后一卷含解析01
    2022届广东省珠海市香洲区前山中学中考数学考前最后一卷含解析02
    2022届广东省珠海市香洲区前山中学中考数学考前最后一卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届广东省珠海市香洲区前山中学中考数学考前最后一卷含解析

    展开
    这是一份2022届广东省珠海市香洲区前山中学中考数学考前最后一卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,如图,内接于,若,则等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.若一个三角形的两边长分别为5和7,则该三角形的周长可能是(  )
    A.12 B.14 C.15 D.25
    2.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于( )

    A.1∶3 B.2∶3 C.∶2 D.∶3
    3.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是( )

    A.∠ABD=∠C B.∠ADB=∠ABC C. D.
    4.计算的结果是(       )
    A. B. C. D.2
    5.下列计算正确的是( )
    A.3a2﹣6a2=﹣3
    B.(﹣2a)•(﹣a)=2a2
    C.10a10÷2a2=5a5
    D.﹣(a3)2=a6
    6.若点A(1,a)和点B(4,b)在直线y=-2x+m上,则a与b的大小关系是(  )
    A.a>b B.a<b
    C.a=b D.与m的值有关
    7.如图,内接于,若,则  

    A. B. C. D.
    8.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是(  )

    A.70° B.80° C.110° D.140°
    9.用配方法解下列方程时,配方有错误的是( )
    A.化为 B.化为
    C.化为 D.化为
    10.如图,实数﹣3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是(  )

    A.点M B.点N C.点P D.点Q
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.因式分解:_______________________.
    12.如图,中,,,,将绕点逆时针旋转至,使得点恰好落在上,与交于点,则的面积为_________.

    13.已知整数k<5,若△ABC的边长均满足关于x的方程,则△ABC的周长是   .
    14.如图,AB∥CD,点E是CD上一点,∠AEC=40°,EF平分∠AED交AB于点F,则∠AFE=___度.

    15.若关于x的方程有两个相等的实数根,则m的值是_________.
    16.某学校要购买电脑,A型电脑每台5000元,B型电脑每台3000元,购买10台电脑共花费34000元设购买A型电脑x台,购买B型电脑y台,则根据题意可列方程组为______.
    三、解答题(共8题,共72分)
    17.(8分)在平面直角坐标系中,一次函数(a≠0)的图象与反比例函数的图象交于第二、第四象限内的A、B两点,与轴交于点C,过点A作AH⊥轴,垂足为点H,OH=3,tan∠AOH=,点B的坐标为(,-2).求该反比例函数和一次函数的解析式;求△AHO的周长.

    18.(8分)如图,P是半圆弧上一动点,连接PA、PB,过圆心O作交PA于点C,连接已知,设O,C两点间的距离为xcm,B,C两点间的距离为ycm.
    小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.
    下面是小东的探究过程,请补充完整:
    通过取点、画图、测量,得到了x与y的几组值,如下表:

    0

    1

    2

    3

    3





    6
    说明:补全表格时相关数据保留一位小数
    建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;
    结合画出的函数图象,解决问题:直接写出周长C的取值范围是______.

    19.(8分)如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶.

    (1)由定义知,取AB中点N,连结MN,MN与AB的关系是_____.
    (2)抛物线y=对应的准蝶形必经过B(m,m),则m=_____,对应的碟宽AB是_____.
    (3)抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x 轴上,且AB=1.
    ①求抛物线的解析式;
    ②在此抛物线的对称轴上是否有这样的点P(xp,yp),使得∠APB为锐角,若有,请求出yp的取值范围.若没有,请说明理由.
    20.(8分)现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h<1,请求出m的取值范围.
    21.(8分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.
    (1)求证:PA是⊙O的切线;
    (2)若tan∠BAD=,且OC=4,求BD的长.

    22.(10分)中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.
    (1)若苗圃园的面积为72平方米,求x;

    (2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;
    (3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.
    23.(12分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.
    (1)按约定,“某顾客在该天早餐得到两个鸡蛋”是   事件(填“随机”、“必然”或“不可能”);
    (2)请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.
    24.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求证:△ABP≌△CAQ;请判断△APQ是什么形状的三角形?试说明你的结论.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.
    【详解】
    ∴三角形的两边长分别为5和7,
    ∴2<第三条边<12,
    ∴5+7+2<三角形的周长<5+7+12,
    即14<三角形的周长<24,
    故选C.
    【点睛】
    本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.
    2、A
    【解析】
    ∵DE⊥AC,EF⊥AB,FD⊥BC,
    ∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,
    ∴∠C=∠FDE,
    同理可得:∠B=∠DFE,∠A=DEF,
    ∴△DEF∽△CAB,
    ∴△DEF与△ABC的面积之比= ,
    又∵△ABC为正三角形,
    ∴∠B=∠C=∠A=60°
    ∴△EFD是等边三角形,
    ∴EF=DE=DF,
    又∵DE⊥AC,EF⊥AB,FD⊥BC,
    ∴△AEF≌△CDE≌△BFD,
    ∴BF=AE=CD,AF=BD=EC,
    在Rt△DEC中,
    DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,
    又∵DC+BD=BC=AC=DC,
    ∴,
    ∴△DEF与△ABC的面积之比等于:
    故选A.
    点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边之比,进而得到面积比.
    3、C
    【解析】
    由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.
    【详解】
    ∵∠A是公共角,
    ∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;
    当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;
    AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,
    故选C.
    4、C
    【解析】
    化简二次根式,并进行二次根式的乘法运算,最后合并同类二次根式即可.
    【详解】
    原式=3﹣2·=3﹣=.
    故选C.
    【点睛】
    本题主要考查二次根式的化简以及二次根式的混合运算.
    5、B
    【解析】
    根据整式的运算法则分别计算可得出结论.
    【详解】
    选项A,由合并同类项法则可得3a2﹣6a2=﹣3a2,不正确;
    选项B,单项式乘单项式的运算可得(﹣2a)•(﹣a)=2a2,正确;
    选项C,根据整式的除法可得10a10÷2a2=5a8,不正确;
    选项D,根据幂的乘方可得﹣(a3)2=﹣a6,不正确.
    故答案选B.
    考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式.
    6、A
    【解析】
    【分析】根据一次函数性质:中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.由-2<0得,当x12时,y1>y2.
    【详解】因为,点A(1,a)和点B(4,b)在直线y=-2x+m上,-2<0,
    所以,y随x的增大而减小.
    因为,1<4,
    所以,a>b.
    故选A
    【点睛】本题考核知识点:一次函数性质. 解题关键点:判断一次函数中y与x的大小关系,关键看k的符号.
    7、B
    【解析】
    根据圆周角定理求出,根据三角形内角和定理计算即可.
    【详解】
    解:由圆周角定理得,,


    故选:B.
    【点睛】
    本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键.
    8、C
    【解析】
    分析:作对的圆周角∠APC,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC的度数.
    详解:作对的圆周角∠APC,如图,

    ∵∠P=∠AOC=×140°=70°
    ∵∠P+∠B=180°,
    ∴∠B=180°﹣70°=110°,
    故选:C.
    点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    9、B
    【解析】
    配方法的一般步骤:
    (1)把常数项移到等号的右边;
    (2)把二次项的系数化为1;
    (3)等式两边同时加上一次项系数一半的平方.
    【详解】
    解:、,,,,故选项正确.
    、,,,,故选项错误.
    、,,,,,故选项正确.
    、,,,,.故选项正确.
    故选:.
    【点睛】
    此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
    10、D
    【解析】
    ∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,
    ∴原点在点M与N之间,
    ∴这四个数中绝对值最大的数对应的点是点Q.
    故选D.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    先提公因式,再用平方差公式分解.
    【详解】
    解:
    【点睛】
    本题考查因式分解,掌握因式分解方法是关键.
    12、
    【解析】
    首先证明△CAA′是等边三角形,再证明△A′DC是直角三角形,在Rt△A′DC中利用含30度的直角三角形三边的关系求出CD、A′D即可解决问题.
    【详解】
    在Rt△ACB中,∠ACB=90°,∠B=30°,
    ∴∠A=60°,
    ∵△ABC绕点C逆时针旋转至△A′B′C,使得点A′恰好落在AB上,
    ∴CA=CA′=2,∠CA′B′=∠A=60°,
    ∴△CAA′为等边三角形,
    ∴∠ACA′=60°,
    ∴∠BCA′=∠ACB -∠ACA′=90°-60°=30°,
    ∴∠A′DC=180°-∠CA′B′-∠BCA′=90°,
    在Rt△A′DC中,∵∠A′CD=30°,
    ∴A′D=CA′=1,CD=A′D=,
    ∴.
    故答案为:
    【点睛】
    本题考查了含30度的直角三角形三边的关系,等边三角形的判定和性质以及旋转的性质,掌握旋转的性质“对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等”是解题的关键.
    13、6或12或1.
    【解析】
    根据题意得k≥0且(3)2﹣4×8≥0,解得k≥.
    ∵整数k<5,∴k=4.
    ∴方程变形为x2﹣6x+8=0,解得x1=2,x2=4.
    ∵△ABC的边长均满足关于x的方程x2﹣6x+8=0,
    ∴△ABC的边长为2、2、2或4、4、4或4、4、2.
    ∴△ABC的周长为6或12或1.
    考点:一元二次方程根的判别式,因式分解法解一元二次方程,三角形三边关系,分类思想的应用.
    【详解】
    请在此输入详解!
    14、70°.
    【解析】
    由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.
    【详解】
    ∵∠AEC=40°,
    ∴∠AED=180°﹣∠AEC=140°,
    ∵EF平分∠AED,
    ∴,
    又∵AB∥CD,
    ∴∠AFE=∠DEF=70°.
    故答案为:70
    【点睛】
    本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出∠DEF的度数是解决问题的关键.
    15、m=-
    【解析】
    根据题意可以得到△=0,从而可以求得m的值.
    【详解】
    ∵关于x的方程有两个相等的实数根,
    ∴△=,
    解得:.
    故答案为.
    16、
    【解析】
    试题解析:根据题意得:
    故答案为

    三、解答题(共8题,共72分)
    17、(1)一次函数为,反比例函数为;(2)△AHO的周长为12
    【解析】
    分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式.
    (2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.
    详解:(1)∵tan∠AOH==
    ∴AH=OH=4
    ∴A(-4,3),代入,得
    k=-4×3=-12
    ∴反比例函数为

    ∴m=6
    ∴B(6,-2)

    ∴=,b=1
    ∴一次函数为
    (2)
    △AHO的周长为:3+4+5=12
    点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.
    18、(1)(2)详见解析;(3).
    【解析】
    (1)动手操作,细心测量即可求解;(2)利用描点、连线画出函数图象即可;(3)根据观察找到函数值的取值范围,即可求得△OBC周长C的取值范围.
    【详解】
    经过测量,时,y值为
    根据题意,画出函数图象如下图:

    根据图象,可以发现,y的取值范围为:,

    故答案为.
    【点睛】
    本题通过学生测量、绘制函数,考查了学生的动手能力,由观察函数图象,确定函数的最值,让学生进一步了解函数的意义.
    19、(1)MN与AB的关系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,yp的取值范围是yp<﹣2或yp>2.
    【解析】
    (1)直接利用等腰直角三角形的性质分析得出答案;
    (2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;
    (2)①根据题意得出抛物线必过(2,0),进而代入求出答案;
    ②根据y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,进而得出答案.
    【详解】
    (1)MN与AB的关系是:MN⊥AB,MN=AB,
    如图1,∵△AMB是等腰直角三角形,且N为AB的中点,
    ∴MN⊥AB,MN=AB,
    故答案为MN⊥AB,MN=AB;

    (2)∵抛物线y=对应的准蝶形必经过B(m,m),
    ∴m=m2,
    解得:m=2或m=0(不合题意舍去),
    当m=2则,2=x2,
    解得:x=±2,
    则AB=2+2=4;
    故答案为2,4;
    (2)①由已知,抛物线对称轴为:y轴,
    ∵抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x 轴上,且AB=1.
    ∴抛物线必过(2,0),代入y=ax2﹣4a﹣(a>0),
    得,9a﹣4a﹣=0,
    解得:a=,
    ∴抛物线的解析式是:y=x2﹣2;
    ②由①知,如图2,y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,
    ∴在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,yp的取值范围是yp<﹣2或yp>2.

    【点睛】
    此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键.
    20、(1)y=x﹣2,y=x2++1;(2)a<;(3)m<﹣2或m>1.
    【解析】
    (1)直接将点代入函数解析式,用待定系数法即可求解函数解析式;
    (2)点(2,1)代入一次函数解析式,得到n=−2m,利用m与n的关系能求出二次函数对称轴x=1,由一次函数经过一、三象限可得m>1,确定二次函数开口向上,此时当 y1>y2,只需让a到对称轴的距离比a+1到对称轴的距离大即可求a的范围.
    (3)将A(h,k)分别代入两个二次函数解析式,再结合对称抽得h=,将得到的三个关系联立即可得到,再由题中已知−1<h<1,利用h的范围求出m的范围.
    【详解】
    (1)将点(2,1),(3,1),代入一次函数y=mx+n中,

    解得,
    ∴一次函数的解析式是y=x﹣2,
    再将点(2,1),(3,1),代入二次函数y=mx2+nx+1,

    解得,
    ∴二次函数的解析式是.
    (2)∵一次函数y=mx+n经过点(2,1),
    ∴n=﹣2m,
    ∵二次函数y=mx2+nx+1的对称轴是x=,
    ∴对称轴为x=1,
    又∵一次函数y=mx+n图象经过第一、三象限,
    ∴m>1,
    ∵y1>y2,
    ∴1﹣a>1+a﹣1,
    ∴a<.
    (3)∵y=mx2+nx+1的顶点坐标为A(h,k),
    ∴k=mh2+nh+1,且h=,
    又∵二次函数y=x2+x+1也经过A点,
    ∴k=h2+h+1,
    ∴mh2+nh+1=h2+h+1,
    ∴,
    又∵﹣1<h<1,
    ∴m<﹣2或m>1.
    【点睛】
    本题考点:点与函数的关系;二次函数的对称轴与函数值关系;待定系数法求函数解析式;不等式的解法;数形结合思想是解决二次函数问题的有效方法.
    21、(1)证明见解析;(2)
    【解析】
    试题分析:(1)连接OB,由SSS证明△PAO≌△PBO,得出∠PAO=∠PBO=90°即可;
    (2)连接BE,证明△PAC∽△AOC,证出OC是△ABE的中位线,由三角形中位线定理得出BE=2OC,由△DBE∽△DPO可求出.
    试题解析:(1)连结OB,则OA=OB.如图1,

    ∵OP⊥AB,
    ∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB.
    在△PAO和△PBO中,
    ∵,
    ∴△PAO≌△PBO(SSS),
    ∴∠PBO=∠PAO.∵PB为⊙O的切线,B为切点,∴∠PBO=90°,
    ∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;
    (2)连结BE.如图2,

    ∵在Rt△AOC中,tan∠BAD=tan∠CAO=,且OC=4,
    ∴AC=1,则BC=1.在Rt△APO中,∵AC⊥OP,
    ∴△PAC∽△AOC,∴AC2=OC•PC,解得PC=9,
    ∴OP=PC+OC=2.在Rt△PBC中,由勾股定理,得PB=,
    ∵AC=BC,OA=OE,即OC为△ABE的中位线.
    ∴OC=BE,OC∥BE,∴BE=2OC=3.
    ∵BE∥OP,∴△DBE∽△DPO,
    ∴,即,解得BD=.
    22、 (1) x=2;(2)苗圃园的面积最大为12.5平方米,最小为5平方米;(3) 6≤x≤4.
    【解析】
    (1)根据题意得方程求解即可;
    (2)设苗圃园的面积为y,根据题意得到二次函数解析式y=x(31-2x)=-2x2+31x,根据二次函数的性质求解即可;
    (3)由题意得不等式,即可得到结论.
    【详解】
    解:(1)苗圃园与墙平行的一边长为(31-2x)米.依题意可列方程
    x(31-2x)=72,即x2-15x+36=1.
    解得x1=3,x2=2.
    又∵31-2x≤3,即x≥6,
    ∴x=2
    (2)依题意,得8≤31-2x≤3.解得6≤x≤4.
    面积S=x(31-2x)=-2(x-)2+(6≤x≤4).
    ①当x=时,S有最大值,S最大=;
    ②当x=4时,S有最小值,S最小=4×(31-22)=5.
    (3)令x(31-2x)=41,得x2-15x+51=1.
    解得x1=5,x2=1
    ∴x的取值范围是5≤x≤4.
    23、(1)不可能;(2).
    【解析】
    (1)利用确定事件和随机事件的定义进行判断;
    (2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.
    【详解】
    (1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;
    故答案为不可能;
    (2)画树状图:

    共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,
    所以某顾客该天早餐刚好得到菜包和油条的概率=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
    24、 (1)证明见解析;(2) △APQ是等边三角形.
    【解析】
    (1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;
    (2)根据全等三角形的性质得到AP=AQ ,再证∠PAQ = 60°,从而得出△APQ是等边三角形.
    【详解】
    证明:(1)∵△ABC为等边三角形, ∴AB=AC,∠BAC=60°,
    在△ABP和△ACQ中, ∴△ABP≌△ACQ(SAS),
    (2)∵△ABP≌△ACQ, ∴∠BAP=∠CAQ,AP=AQ,
    ∵∠BAP+∠CAP=60°, ∴∠PAQ=∠CAQ+∠CAP=60°,
    ∴△APQ是等边三角形.
    【点睛】
    本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证,△ABP≌△ACQ是解题的关键.

    相关试卷

    2022-2023学年广东省珠海市香洲区前山中学八年级(下)期中数学试卷(含解析): 这是一份2022-2023学年广东省珠海市香洲区前山中学八年级(下)期中数学试卷(含解析),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广东省珠海香洲区四校联考2022年中考考前最后一卷数学试卷含解析: 这是一份广东省珠海香洲区四校联考2022年中考考前最后一卷数学试卷含解析,共18页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    广东珠海市香洲区2022年中考数学考前最后一卷含解析: 这是一份广东珠海市香洲区2022年中考数学考前最后一卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map