|试卷下载
搜索
    上传资料 赚现金
    广东珠海市香洲区2022年中考数学考前最后一卷含解析
    立即下载
    加入资料篮
    广东珠海市香洲区2022年中考数学考前最后一卷含解析01
    广东珠海市香洲区2022年中考数学考前最后一卷含解析02
    广东珠海市香洲区2022年中考数学考前最后一卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东珠海市香洲区2022年中考数学考前最后一卷含解析

    展开
    这是一份广东珠海市香洲区2022年中考数学考前最后一卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.若代数式在实数范围内有意义,则x的取值范围是( )
    A. B. C. D.
    2.如图,BC平分∠ABE,AB∥CD,E是CD上一点,若∠C=35°,则∠BED的度数为(  )

    A.70° B.65° C.62° D.60°
    3.如图,正六边形ABCDEF内接于,M为EF的中点,连接DM,若的半径为2,则MD的长度为  

    A. B. C.2 D.1
    4.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为(    )
    A. B. C. D.
    5.在0,π,﹣3,0.6,这5个实数中,无理数的个数为(  )
    A.1个 B.2个 C.3个 D.4个
    6.如图,△ABC内接于⊙O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则CE:DE等于( )

    A.3:1 B.4:1 C.5:2 D.7:2
    7.如图,按照三视图确定该几何体的侧面积是(单位:cm)( )

    A.24π cm2 B.48π cm2 C.60π cm2 D.80π cm2
    8.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是(  )
    ①∠CDE=∠DFB;②BD>CE;③BC=CD;④△DCE与△BDF的周长相等.

    A.1个 B.2个 C.3个 D.4个
    9.(2011•黑河)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2﹣4ac>0 ②a>0 ③b>0 ④c>0 ⑤9a+3b+c<0,则其中结论正确的个数是(  )

    A、2个 B、3个
    C、4个 D、5个
    10.若式子在实数范围内有意义,则 x的取值范围是( )
    A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1
    二、填空题(共7小题,每小题3分,满分21分)
    11.已知AD、BE是△ABC的中线,AD、BE相交于点F,如果AD=6,那么AF的长是_____.
    12.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.

    13.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_____(填“甲”或“乙”).
    14.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,点P、Q分别在边BC、AC上,PQ∥AB,把△PCQ绕点P旋转得到△PDE(点C、Q分别与点D、E对应),点D落在线段PQ上,若AD平分∠BAC,则CP的长为_________.

    15.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为 .

    16.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E= .

    17.点A(1,2),B(n,2)都在抛物线y=x2﹣4x+m上,则n=_____.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,二次函数y=﹣+mx+4﹣m的图象与x轴交于A、B两点(A在B的左侧),与),轴交于点C.抛物线的对称轴是直线x=﹣2,D是抛物线的顶点.
    (1)求二次函数的表达式;
    (2)当﹣<x<1时,请求出y的取值范围;
    (3)连接AD,线段OC上有一点E,点E关于直线x=﹣2的对称点E'恰好在线段AD上,求点E的坐标.

    19.(5分)重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.求每件A种商品和每件B种商品售出后所得利润分别为多少元?由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?
    20.(8分)2019年8月.山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态.太职学院足球场作为一个重要比赛场馆.占地面积约24300平方米.总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色.2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了.结来比原计划提前4天完成安装任务.求原计划每天安装多少个座位.

    21.(10分)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|
    22.(10分)2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批
    花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多元.
    (1)第一批花每束的进价是多少元.
    (2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?
    23.(12分)(1)如图1,正方形ABCD中,点E,F分别在边CD,AD上,AE⊥BF于点G,求证:AE=BF;
    (2)如图2,矩形ABCD中,AB=2,BC=3,点E,F分别在边CD,AD上,AE⊥BF于点M,探究AE与BF的数量关系,并证明你的结论;
    (3)在(2)的基础上,若AB=m,BC=n,其他条件不变,请直接写出AE与BF的数量关系;   .

    24.(14分)如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.
    (1)如图1,猜想∠QEP=   °;
    (2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;
    (3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    试题解析:要使分式有意义,
    则1-x≠0,
    解得:x≠1.
    故选D.
    2、A
    【解析】
    由AB∥CD,根据两直线平行,内错角相等,即可求得∠ABC的度数,又由BC平分∠ABE,即可求得∠ABE的度数,继而求得答案.
    【详解】
    ∵AB∥CD,∠C=35°,
    ∴∠ABC=∠C=35°,
    ∵BC平分∠ABE,
    ∴∠ABE=2∠ABC=70°,
    ∵AB∥CD,
    ∴∠BED=∠ABE=70°.
    故选:A.
    【点睛】
    本题考查了平行线的性质,解题的关键是掌握平行线的性质进行解答.
    3、A
    【解析】
    连接OM、OD、OF,由正六边形的性质和已知条件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函数求出OM,再由勾股定理求出MD即可.
    【详解】
    连接OM、OD、OF,
    ∵正六边形ABCDEF内接于⊙O,M为EF的中点,
    ∴OM⊥OD,OM⊥EF,∠MFO=60°,
    ∴∠MOD=∠OMF=90°,
    ∴OM=OF•sin∠MFO=2×=,
    ∴MD=,
    故选A.

    【点睛】
    本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.
    4、D
    【解析】
    一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.
    【详解】
    根据题意 :从袋中任意摸出一个球,是白球的概率为==.
    故答案为D
    【点睛】
    此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    5、B
    【解析】
    分别根据无理数、有理数的定义逐一判断即可得.
    【详解】
    解:在0,π,-3,0.6,这5个实数中,无理数有π、这2个,
    故选B.
    【点睛】
    此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.
    6、A
    【解析】
    利用垂径定理的推论得出DO⊥AB,AF=BF,进而得出DF的长和△DEF∽△CEA,再利用相似三角形的性质求出即可.
    【详解】
    连接DO,交AB于点F,

    ∵D是的中点,
    ∴DO⊥AB,AF=BF,
    ∵AB=8,
    ∴AF=BF=4,
    ∴FO是△ABC的中位线,AC∥DO,
    ∵BC为直径,AB=8,AC=6,
    ∴BC=10,FO=AC=1,
    ∴DO=5,
    ∴DF=5-1=2,
    ∵AC∥DO,
    ∴△DEF∽△CEA,
    ∴,
    ∴==1.
    故选:A.
    【点睛】
    此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出△DEF∽△CEA是解题关键.
    7、A
    【解析】
    由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其侧面积.
    【详解】
    解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;
    根据三视图知:该圆锥的母线长为6cm,底面半径为8÷1=4cm,
    故侧面积=πrl=π×6×4=14πcm1.
    故选:A.
    【点睛】
    此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
    8、D
    【解析】
    等腰直角三角形纸片ABC中,∠C=90°,
    ∴∠A=∠B=45°,
    由折叠可得,∠EDF=∠A=45°,
    ∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,
    ∴∠CDE=∠DFB,故①正确;
    由折叠可得,DE=AE=3,
    ∴CD=,
    ∴BD=BC﹣DC=4﹣>1,
    ∴BD>CE,故②正确;
    ∵BC=4,CD=4,
    ∴BC=CD,故③正确;
    ∵AC=BC=4,∠C=90°,
    ∴AB=4,
    ∵△DCE的周长=1+3+2=4+2,
    由折叠可得,DF=AF,
    ∴△BDF的周长=DF+BF+BD=AF+BF+BD=AB+BD=4+(4﹣2)=4+2,
    ∴△DCE与△BDF的周长相等,故④正确;
    故选D.
    点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    9、B
    【解析】分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.
    解答:解:①根据图示知,二次函数与x轴有两个交点,所以△=b2-4ac>0;故①正确;
    ②根据图示知,该函数图象的开口向上,
    ∴a>0;
    故②正确;
    ③又对称轴x=-=1,
    ∴<0,
    ∴b<0;
    故本选项错误;
    ④该函数图象交于y轴的负半轴,
    ∴c<0;
    故本选项错误;
    ⑤根据抛物线的对称轴方程可知:(-1,0)关于对称轴的对称点是(3,0);
    当x=-1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确.
    所以①②⑤三项正确.
    故选B.
    10、A
    【解析】
    直接利用二次根式有意义的条件分析得出答案.
    【详解】
    ∵式子在实数范围内有意义,
    ∴ x﹣1>0, 解得:x>1.
    故选:A.
    【点睛】
    此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、4
    【解析】
    由三角形的重心的概念和性质,由AD、BE为△ABC的中线,且AD与BE相交于点F,可知F点是三角形ABC的重心,可得AF=AD=×6=4.
    故答案为4.
    点睛:此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.
    12、20 cm.
    【解析】
    将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.
    【详解】
    解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.
    根据勾股定理,得(cm).

    故答案为:20cm.
    【点睛】
    本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.
    13、甲.
    【解析】
    乙所得环数的平均数为:=5,
    S2=[+++…+]
    =[++++]
    =16.4,
    甲的方差<乙的方差,所以甲较稳定.
    故答案为甲.
    点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.
    14、1
    【解析】
    连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=11-4x,故可得出x的值,进而得出结论.
    【详解】
    连接AD,

    ∵PQ∥AB,
    ∴∠ADQ=∠DAB,
    ∵点D在∠BAC的平分线上,
    ∴∠DAQ=∠DAB,
    ∴∠ADQ=∠DAQ,
    ∴AQ=DQ,
    在Rt△ABC中,∵AB=5,BC=3,
    ∴AC=4,
    ∵PQ∥AB,
    ∴△CPQ∽△CBA,
    ∴CP:CQ=BC:AC=3:4,设PC=3x,CQ=4x,
    在Rt△CPQ中,PQ=5x,
    ∵PD=PC=3x,
    ∴DQ=1x,
    ∵AQ=4-4x,
    ∴4-4x=1x,解得x=,
    ∴CP=3x=1;
    故答案为:1.
    【点睛】
    本题考查平行线的性质、旋转变换、等腰三角形的判定、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.
    15、1.
    【解析】
    试题分析:如图,当AB=AD时,满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=1,故答案为1.

    考点:矩形的性质;等腰三角形的性质;勾股定理;分类讨论.
    16、50°.
    【解析】
    解:连接DF,连接AF交CE于G,

    ∵EF为⊙O的切线,
    ∴∠OFE=90°,
    ∵AB为直径,H为CD的中点
    ∴AB⊥CD,即∠BHE=90°,
    ∵∠ACF=65°,
    ∴∠AOF=130°,
    ∴∠E=360°-∠BHE-∠OFE-∠AOF=50°,
    故答案为:50°.
    17、1
    【解析】
    根据题意可以求得m的值和n的值,由A的坐标,可确定B的坐标,进而可以得到n的值.
    【详解】
    :∵点A(1,2),B(n,2)都在抛物线y=x2-4x+m上,
    ∴ ,
    解得 或 ,
    ∴点B为(1,2)或(1,2),
    ∵点A(1,2),
    ∴点B只能为(1,2),
    故n的值为1,
    故答案为:1.
    【点睛】
    本题考查了二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质求解.

    三、解答题(共7小题,满分69分)
    18、(1)y=﹣x1﹣1x+6;(1)<y<;(3)(0,4).
    【解析】
    (1)利用对称轴公式求出m的值,即可确定出解析式;
    (1)根据x的范围,利用二次函数的增减性确定出y的范围即可;
    (3)根据题意确定出D与A坐标,进而求出直线AD解析式,设出E坐标,利用对称性确定出E坐标即可.
    【详解】
    (1)∵抛物线对称轴为直线x=﹣1,∴﹣=﹣1,即m=﹣1,则二次函数解析式为y=﹣x1﹣1x+6;
    (1)当x=﹣时,y=;当x=1时,y=.
    ∵﹣<x<1位于对称轴右侧,y随x的增大而减小,∴<y<;
    (3)当x=﹣1时,y=8,∴顶点D的坐标是(﹣1,8),令y=0,得到:﹣x1﹣1x+6=0,解得:x=﹣6或x=1.
    ∵点A在点B的左侧,∴点A坐标为(﹣6,0).
    设直线AD解析式为y=kx+b,可得:,解得:,即直线AD解析式为y=1x+11.
    设E(0,n),则有E′(﹣4,n),代入y=1x+11中得:n=4,则点E坐标为(0,4).
    【点睛】
    本题考查了抛物线与x轴的交点,以及二次函数的性质,熟练掌握二次函数的性质是解答本题的关键.
    19、(1)200元和100元(2)至少6件
    【解析】
    (1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;
    (2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解即可.
    【详解】
    解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,
    得,解得:,
    答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.
    (2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得
    200a+100(34﹣a)≥4000,
    解得:a≥6
    答:威丽商场至少需购进6件A种商品.
    20、原计划每天安装100个座位.
    【解析】
    根据题意先设原计划每天安装x个座位,列出方程再求解.
    【详解】
    解:设原计划每天安装个座位,采用新技术后每天安装个座位,
    由题意得:.
    解得:.
    经检验:是原方程的解.
    答:原计划每天安装100个座位.
    【点睛】
    此题重点考查学生对分式方程的实际应用,掌握分式方程的解法是解题的关键.
    21、1
    【解析】
    原式第一项利用乘方法则计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简即可得到结果.
    【详解】
    解:原式=1﹣1×+1+=1﹣+1+=1.
    【点睛】
    此题考查了含有特殊角的三角函数值的运算,熟练掌握各运算法则是解题的关键.
    22、(1)2元;(2)第二批花的售价至少为元;
    【解析】
    (1)设第一批花每束的进价是x元,则第二批花每束的进价是(x+0.5)元,根据数量=总价÷单价结合第二批所购花的数量是第一批所购花数的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)由第二批花的进价比第一批的进价多0.5元可求出第二批花的进价,设第二批菊花的售价为m元,根据利润=每束花的利润×数量结合总利润不低于1500元,即可得出关于m的一元一次不等式,解之即可得出结论.
    【详解】
    (1)设第一批花每束的进价是x元,则第二批花每束的进价是元,
    根据题意得:,
    解得:,
    经检验:是原方程的解,且符合题意.
    答:第一批花每束的进价是2元.
    (2)由可知第二批菊花的进价为元.
    设第二批菊花的售价为m元,
    根据题意得:,
    解得:.
    答:第二批花的售价至少为元.
    【点睛】
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
    23、(1)证明见解析;(2)AE=BF,(3)AE=BF;
    【解析】
    (1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论;(3)结论:AE=BF.证明方法类似(2);
    【详解】
    (1)证明:

    ∵四边形ABCD是正方形,
    ∴∠ABC=∠C,AB=BC.
    ∵AE⊥BF,
    ∴∠AMB=∠BAM+∠ABM=90°,
    ∵∠ABM+∠CBF=90°,
    ∴∠BAM=∠CBF.
    在△ABE和△BCF中,

    ∴△ABE≌△BCF(ASA),
    ∴AE=BF;
    (2)解:如图2中,结论:AE=BF,

    理由:∵四边形ABCD是矩形,
    ∴∠ABC=∠C,
    ∵AE⊥BF,
    ∴∠AMB=∠BAM+∠ABM=90°,
    ∵∠ABM+∠CBF=90°,
    ∴∠BAM=∠CBF,
    ∴△ABE∽△BCF,
    ∴,
    ∴AE=BF.
    (3)结论:AE=BF.
    理由:∵四边形ABCD是矩形,
    ∴∠ABC=∠C,
    ∵AE⊥BF,
    ∴∠AMB=∠BAM+∠ABM=90°,
    ∵∠ABM+∠CBF=90°,
    ∴∠BAM=∠CBF,
    ∴△ABE∽△BCF,
    ∴,
    ∴AE=BF.
    【点睛】
    本题考查了四边形综合题、相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,矩形的性质,熟练掌握全等三角形或相似三角形的判定和性质是解题的关键.
    24、(1)∠QEP=60°;(2)∠QEP=60°,证明详见解析;(3)
    【解析】
    (1)如图1,先根据旋转的性质和等边三角形的性质得出∠PCA=∠QCB,进而可利用SAS证明△CQB≌△CPA,进而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的内角和定理即可求得∠QEP=∠QCP,从而完成猜想;
    (2)以∠DAC是锐角为例,如图2,仿(1)的证明思路利用SAS证明△ACP≌△BCQ,可得∠APC=∠Q,进一步即可证得结论;
    (3)仿(2)可证明△ACP≌△BCQ,于是AP=BQ,再求出AP的长即可,作CH⊥AD于H,如图3,易证∠APC=30°,△ACH为等腰直角三角形,由AC=4可求得CH、PH的长,于是AP可得,问题即得解决.
    【详解】
    解:(1)∠QEP=60°;
    证明:连接PQ,如图1,由题意得:PC=CQ,且∠PCQ=60°,
    ∵△ABC是等边三角形,∴∠ACB=60°,∴∠PCA=∠QCB,
    则在△CPA和△CQB中,

    ∴△CQB≌△CPA(SAS),
    ∴∠CQB=∠CPA,
    又因为△PEM和△CQM中,∠EMP=∠CMQ,
    ∴∠QEP=∠QCP=60°.
    故答案为60;

    (2)∠QEP=60°.以∠DAC是锐角为例.
    证明:如图2,∵△ABC是等边三角形,
    ∴AC=BC,∠ACB=60°,
    ∵线段CP绕点C顺时针旋转60°得到线段CQ,
    ∴CP=CQ,∠PCQ=60°,
    ∴∠ACB+∠BCP=∠BCP+∠PCQ,
    即∠ACP=∠BCQ,
    在△ACP和△BCQ中,

    ∴△ACP≌△BCQ(SAS),
    ∴∠APC=∠Q,
    ∵∠1=∠2,
    ∴∠QEP=∠PCQ=60°; 

    (3)连结CQ,作CH⊥AD于H,如图3,
    与(2)一样可证明△ACP≌△BCQ,∴AP=BQ,
    ∵∠DAC=135°,∠ACP=15°,
    ∴∠APC=30°,∠CAH=45°,
    ∴△ACH为等腰直角三角形,
    ∴AH=CH=AC=×4=,
    在Rt△PHC中,PH=CH=,
    ∴PA=PH−AH=-,
    ∴BQ=−.
    【点睛】
    本题考查了等边三角形的性质、旋转的性质、全等三角形的判定和性质、等腰直角三角形的性质和有关计算、30°角的直角三角形的性质等知识,涉及的知识点多、综合性强,灵活应用全等三角形的判定和性质、熟练掌握旋转的性质和相关图形的性质是解题的关键.

    相关试卷

    广东省珠海香洲区四校联考2022年中考考前最后一卷数学试卷含解析: 这是一份广东省珠海香洲区四校联考2022年中考考前最后一卷数学试卷含解析,共18页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2022届广东省珠海市达标名校中考考前最后一卷数学试卷含解析: 这是一份2022届广东省珠海市达标名校中考考前最后一卷数学试卷含解析,共21页。试卷主要包含了下列运算中,计算结果正确的是,下列实数中,无理数是,下列计算正确的是等内容,欢迎下载使用。

    2021-2022学年广东省珠海市名校中考考前最后一卷数学试卷含解析: 这是一份2021-2022学年广东省珠海市名校中考考前最后一卷数学试卷含解析,共24页。试卷主要包含了下列说法不正确的是, 1分等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map