2022届成都十八中学重点中学中考数学押题卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.估算的值是在( )
A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
2.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为( )
A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm
3.如图是由4个相同的正方体搭成的几何体,则其俯视图是( )
A. B. C. D.
4.下列图形中,既是轴对称图形又是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
5.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )
A. B. C. D.
6.在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是( )
A.k>1 B.k>0 C.k≥1 D.k<1
7.将一把直尺与一块直角三角板如图放置,如果,那么的度数为( ).
A. B. C. D.
8.滴滴快车是一种便捷的出行工具,计价规则如下表:
计费项目 | 里程费 | 时长费 | 远途费 |
单价 | 1.8元/公里 | 0.3元/分钟 | 0.8元/公里 |
注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元. |
小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )
A.10分钟 B.13分钟 C.15分钟 D.19分钟
9.下列图形中,既是中心对称图形又是轴对称图形的是 ( )
A. B. C. D.
10.我市某小区开展了“节约用水为环保作贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表:
月用水量(吨) | 8 | 9 | 10 |
户数 | 2 | 6 | 2 |
则关于这10户家庭的月用水量,下列说法错误的是( )
A.方差是4 B.极差是2 C.平均数是9 D.众数是9
二、填空题(本大题共6个小题,每小题3分,共18分)
11.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:
其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是_____.
12.若二次根式有意义,则x的取值范围为__________.
13.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2016的值为_____.
14.分解因式:x2y﹣4xy+4y=_____.
15.如图,直线经过、两点,则不等式的解集为_______.
16.如图,⊙C 经过原点且与两坐标轴分别交于点 A 与点 B,点 B 的坐标为(﹣,0),M 是圆上一点,∠BMO=120°.⊙C 圆心 C 的坐标是_____.
三、解答题(共8题,共72分)
17.(8分)小丽和哥哥小明分别从家和图书馆同时出发,沿同一条路相向而行,小丽开始跑步,遇到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妺,再继续骑行5分钟,到家两人距离家的路程y(m)与各自离开出发的时间x(min)之间的函数图象如图所示:
(1)求两人相遇时小明离家的距离;
(2)求小丽离距离图书馆500m时所用的时间.
18.(8分)在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:
求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
19.(8分)如图,已知在⊙O中,AB是⊙O的直径,AC=8,BC=1.求⊙O的面积;若D为⊙O上一点,且△ABD为等腰三角形,求CD的长.
20.(8分)如图,直线与第一象限的一支双曲线交于A、B两点,A在B的左边.
(1)若=4,B(3,1),求直线及双曲线的解析式:并直接写出不等式的解集;
(2)若A(1,3),第三象限的双曲线上有一点C,接AC、BC,设直线BC解析式为;当AC⊥AB时,求证:k为定值.
21.(8分)某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价.检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整).请根据统计图中的信息解答下列问题:
本次抽查的样本容量是 ;在扇形统计图中,“主动质疑”对应的圆心角为 度;将条形统计图补充完整;如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?
22.(10分)如图,在中,,,点D是BC上任意一点,将线段AD绕点A逆时针方向旋转,得到线段AE,连结EC.
依题意补全图形;
求的度数;
若,,将射线DA绕点D顺时针旋转交EC的延长线于点F,请写出求AF长的思路.
23.(12分)计算:()-1+()0+-2cos30°.
24.观察下列等式:
第1个等式:;
第2个等式:;
第3个等式:;
第4个等式:;
…
请解答下列问题:按以上规律列出第5个等式:a5= = ;用含有n的代数式表示第n个等式:an= = (n为正整数);求a1+a2+a3+a4+…+a100的值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
求出<<,推出4<<5,即可得出答案.
【详解】
∵<<,
∴4<<5,
∴的值是在4和5之间.
故选:C.
【点睛】
本题考查了估算无理数的大小和二次根式的性质,解此题的关键是得出<<,题目比较好,难度不大.
2、B
【解析】
【分析】由已知可证△ABO∽CDO,故 ,即.
【详解】由已知可得,△ABO∽CDO,
所以, ,
所以,,
所以,AB=5.4
故选B
【点睛】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质.
3、A
【解析】
试题分析:从上面看是一行3个正方形.
故选A
考点:三视图
4、B
【解析】
解:第一个图是轴对称图形,又是中心对称图形;
第二个图是轴对称图形,不是中心对称图形;
第三个图是轴对称图形,又是中心对称图形;
第四个图是轴对称图形,不是中心对称图形;
既是轴对称图形,又是中心对称图形的有2个.故选B.
5、B
【解析】
根据简单概率的计算公式即可得解.
【详解】
一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.
故选B.
考点:简单概率计算.
6、A
【解析】
根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.
【详解】
解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,
即可得k﹣1>0,
解得k>1.
故选A.
【点评】
本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
7、D
【解析】
根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再根据两直线平行,同位角相等可得∠2=∠1.
【详解】
如图,由三角形的外角性质得:∠1=90°+∠1=90°+58°=148°.
∵直尺的两边互相平行,∴∠2=∠1=148°.
故选D.
【点睛】
本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.
8、D
【解析】
设小王的行车时间为x分钟,小张的行车时间为y分钟,根据计价规则计算出小王的车费和小张的车费,建立方程求解.
【详解】
设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:
1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),
10.8+0.3x=16.5+0.3y,
0.3(x-y)=5.7,
x-y=19,
故答案为D.
【点睛】
本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.
9、C
【解析】
试题解析:A. 是轴对称图形,不是中心对称图形,故本选项错误;
B. 是轴对称图形,不是中心对称图形,故本选项错误;
C. 既是中心对称图又是轴对称图形,故本选项正确;
D. 是轴对称图形,不是中心对称图形,故本选项错误.
故选C.
10、A
【解析】
分析:根据极差=最大值-最小值;平均数指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数,以及方差公式S2= [(x1-)2+(x2-)2+…+(xn-)2],分别进行计算可得答案.
详解:极差:10-8=2,
平均数:(8×2+9×6+10×2)÷10=9,
众数为9,
方差:S2= [(8-9)2×2+(9-9)2×6+(10-9)2×2]=0.4,
故选A.
点睛:此题主要考查了极差、众数、平均数、方差,关键是掌握各知识点的计算方法.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
分析:根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论.
详解:∵平均数是12,
∴这组数据的和=12×7=84,
∴被墨汁覆盖三天的数的和=84−4×12=36,
∵这组数据唯一众数是13,
∴被墨汁覆盖的三个数为:10,13,13,
故答案为
点睛:考查方差,算术平均数,众数,根据这组数据唯一众数是13,得到被墨汁覆盖的三个数为:10,13,13是解题的关键.
12、x≥﹣.
【解析】
考点:二次根式有意义的条件.
根据二次根式的意义,被开方数是非负数求解.
解:根据题意得:1+2x≥0,
解得x≥-.
故答案为x≥-.
13、2.
【解析】
把x=m代入方程,求出2m2﹣3m=2,再变形后代入,即可求出答案.
【详解】
解:∵m是方程2x2﹣3x﹣2=0的一个根,
∴代入得:2m2﹣3m﹣2=0,
∴2m2﹣3m=2,
∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,
故答案为:2.
【点睛】
本题考查了求代数式的值和一元二次方程的解,解此题的关键是能求出2m2﹣3m=2.
14、y(x-2)2
【解析】
先提取公因式y,再根据完全平方公式分解即可得.
【详解】
原式==,
故答案为.
15、-1<X<2
【解析】
经过点A,
∴不等式x>kx+b>-2的解集为.
16、(,)
【解析】
连接AB,OC,由圆周角定理可知AB为⊙C的直径,再根据∠BMO=120°可求出∠BAO以及∠BCO的度数,在Rt△COD中,解直角三角形即可解决问题;
【详解】
连接AB,OC,
∵∠AOB=90°,
∴AB为⊙C的直径,
∵∠BMO=120°,
∴∠BAO=60°,
∴∠BCO=2∠BAO=120°,
过C作CD⊥OB于D,则OD=OB,∠DCB=∠DCO=60°,
∵B(-,0),
∴BD=OD=
在Rt△COD中.CD=OD•tan30°=,
∴C(-,),
故答案为C(-,).
【点睛】
本题考查的是圆心角、弧、弦的关系及圆周角定理、直角三角形的性质、坐标与图形的性质及特殊角的三角函数值,根据题意画出图形,作出辅助线,利用数形结合求解是解答此题的关键.
三、解答题(共8题,共72分)
17、(1)两人相遇时小明离家的距离为1500米;(2)小丽离距离图书馆500m时所用的时间为分.
【解析】
(1)根据题意得出小明的速度,进而得出得出小明离家的距离;
(2)由(1)的结论得出小丽步行的速度,再列方程解答即可.
【详解】
解:(1)根据题意可得小明的速度为:4500÷(10+5)=300(米/分),
300×5=1500(米),
∴两人相遇时小明离家的距离为1500米;
(2)小丽步行的速度为:(4500﹣1500)÷(35﹣10)=120(米/分),
设小丽离距离图书馆500m时所用的时间为x分,根据题意得,
1500+120(x﹣10)=4500﹣500,
解得x=.
答:小丽离距离图书馆500m时所用的时间为分.
【点睛】
本题由函数图像获取信息,以及一元一次方程的应用,由函数图像正确获取信息是解答本题的关键.
18、(1)3,补图详见解析;(2)
【解析】
(1)总人数=3÷它所占全体团员的百分比;发4条的人数=总人数-其余人数
(2)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可
【详解】
由扇形图可以看到发箴言三条的有3名学生且占,
故该班团员人数为:
(人),
则发4条箴言的人数为:(人),
所以本月该班团员所发的箴言共(条),则平均所发箴言的条数是:(条).
(2)画树形图如下:
由树形图可得,所选两位同学恰好是一位男同学和一位女同学的概率为.
【点睛】
此题考查扇形统计图,条形统计图,列表法与树状图法和扇形统计图,看懂图中数据是解题关键
19、(1)25π;(2)CD1=,CD2=7
【解析】
分析:(1)利用圆周角定理的推论得到∠C是直角,利用勾股定理求出直径AB,再利用圆的面积公式即可得到答案;
(2)分点D在上半圆中点与点D在下半圆中点这两种情况进行计算即可.
详解:(1)∵AB是⊙O的直径,
∴∠ACB=90°,
∵AB是⊙O的直径,
∴AC=8,BC=1,
∴AB=10,
∴⊙O的面积=π×52=25π.
(2)有两种情况:
①如图所示,当点D位于上半圆中点D1时,可知△ABD1是等腰直角三角形,且OD1⊥AB,
作CE⊥AB垂足为E,CF⊥OD1垂足为F,可得矩形CEOF,
∵CE=,
∴OF= CE=,
∴,
∵=,
∴,
∴,
∴;
②如图所示,当点D位于下半圆中点D2时,
同理可求.
∴CD1=,CD2=7
点睛:本题考查了圆周角定理的推论、勾股定理、矩形的性质等知识.利用分类讨论思想并合理构造辅助线是解题的关键.
20、 (1) 1<x<3或x<0;(2)证明见解析.
【解析】
(1)将B(3,1)代入,将B(3,1)代入,即可求出解析式;
再根据图像直接写出不等式的解集;(2)过A作l∥x轴,过C作CG⊥l于G,过B作BH⊥l于H, △AGC∽△BHA, 设B(m, )、C(n, ),根据对应线段成比例即可得出mn=-9,联立,得,根据根与系数的关系得,由此得出为定值.
【详解】
解:(1)将B(3,1)代入,
∴m=3, ,
将B(3,1)代入,
∴,,
∴,
∴不等式的解集为1<x<3或x<0
(2)过A作l∥x轴,过C作CG⊥l于G,过B作BH⊥l于H,
则△AGC∽△BHA,
设B(m, )、C(n, ),
∵,
∴,
∴,
∴ ,
∴mn=-9,
联立∴,
∴
∴,
∴为定值.
【点睛】
此题主要考查反比例函数的图像与性质,解题的关键是根据题意作出辅助线,再根据反比例函数的性质进行求解.
21、 (1)560;(2)54;(3)补图见解析;(4)18000人
【解析】
(1)本次调查的样本容量为224÷40%=560(人);
(2)“主动质疑”所在的扇形的圆心角的度数是:360∘×84560=54º;
(3)“讲解题目”的人数是:560−84−168−224=84(人).
(4)60000×=18000(人),
答:在课堂中能“独立思考”的学生约有18000人.
22、(1)见解析;(2)90°;(3)解题思路见解析.
【解析】
(1)将线段AD绕点A逆时针方向旋转90°,得到线段AE,连结EC.
(2)先判定△ABD≌△ACE,即可得到,再根据,即可得出;
(3)连接DE,由于△ADE为等腰直角三角形,所以可求;由, ,可求的度数和的度数,从而可知DF的长;过点A作于点H,在Rt△ADH中,由,AD=1可求AH、DH的长;由DF、DH的长可求HF的长;在Rt△AHF中,由AH和HF,利用勾股定理可求AF的长.
【详解】
解:如图,
线段AD绕点A逆时针方向旋转,得到线段AE.
,,
.
,
.
,
在和中
,
≌.
,
中,,,
.
;
Ⅰ连接DE,由于为等腰直角三角形,所以可求;
Ⅱ由,,可求的度数和的度数,从而可知DF的长;
Ⅲ过点A作于点H,在中,由,可求AH、DH的长;
Ⅳ由DF、DH的长可求HF的长;
Ⅴ在中,由AH和HF,利用勾股定理可求AF的长.
故答案为(1)见解析;(2)90°;(3)解题思路见解析.
【点睛】
本题主要考查旋转的性质,等腰直角三角形的性质的运用,解题的关键是要注意对应点与旋转中心所连线段的夹角等于旋转角.
23、4+2.
【解析】
原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.
【详解】
原式=3+1+3-2×
=4+2.
24、(1)(2)(3)
【解析】
(1)(2)观察知,找等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为:序号的2倍减1和序号的2倍加1.
(3)运用变化规律计算
【详解】
解:(1)a5=;
(2)an=;
(3)a1+a2+a3+a4+…+a100
.
2022年江门市重点中学中考数学押题卷含解析: 这是一份2022年江门市重点中学中考数学押题卷含解析,共19页。试卷主要包含了已知电流I等内容,欢迎下载使用。
2022年德宏市重点中学中考押题数学预测卷含解析: 这是一份2022年德宏市重点中学中考押题数学预测卷含解析,共23页。试卷主要包含了下列运算正确的是,计算4×的结果等于,下列命题是真命题的是,cs30°=等内容,欢迎下载使用。
2022届福州市重点中学中考数学押题卷含解析: 这是一份2022届福州市重点中学中考数学押题卷含解析,共21页。试卷主要包含了下列计算正确的是,已知A样本的数据如下等内容,欢迎下载使用。