|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年天津市大港区名校中考数学全真模拟试题含解析
    立即下载
    加入资料篮
    2021-2022学年天津市大港区名校中考数学全真模拟试题含解析01
    2021-2022学年天津市大港区名校中考数学全真模拟试题含解析02
    2021-2022学年天津市大港区名校中考数学全真模拟试题含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年天津市大港区名校中考数学全真模拟试题含解析

    展开
    这是一份2021-2022学年天津市大港区名校中考数学全真模拟试题含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,化简等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.将一次函数的图象向下平移2个单位后,当时,的取值范围是( )
    A. B. C. D.
    2.如图,点C是直线AB,DE之间的一点,∠ACD=90°,下列条件能使得AB∥DE的是( )

    A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°
    3.把6800000,用科学记数法表示为(  )
    A.6.8×105 B.6.8×106 C.6.8×107 D.6.8×108
    4.等腰三角形底角与顶角之间的函数关系是(  )
    A.正比例函数 B.一次函数 C.反比例函数 D.二次函数
    5.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为 ,,,,则四人中成绩最稳定的是( )
    A.甲 B.乙 C.丙 D.丁
    6.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是
    A. B.
    C. D.
    7.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为( )

    A.115° B.120° C.130° D.140°
    8.如图,四边形ABCD内接于⊙O,F是上一点,且,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为( )

    A.45° B.50° C.55° D.60°
    9.化简:(a+)(1﹣)的结果等于(  )
    A.a﹣2 B.a+2 C. D.
    10.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2所示的算筹图我们可以表述为(  )

    A. B. C. D.
    11.下列图形中,既是中心对称图形又是轴对称图形的是 ( )
    A. B. C. D.
    12.已知二次函数 (为常数),当自变量的值满足时,与其对应的函数值的最大值为-1,则的值为( )
    A.3或6 B.1或6 C.1或3 D.4或6
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是 .

    14.如图,点M、N分别在∠AOB的边OA、OB上,将∠AOB沿直线MN翻折,设点O落在点P处,如果当OM=4,ON=3时,点O、P的距离为4,那么折痕MN的长为______.

    15.在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm,则根据题意可得方程   .
    16.因式分解:a2b-4ab+4b=______.
    17.抛物线y=x2﹣2x+3的对称轴是直线_____.
    18.在一个不透明的袋子里装有除颜色外其它均相同的红、蓝小球各一个,每次从袋中摸出一个小球记下颜色后再放回,摸球三次,“仅有一次摸到红球”的概率是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=1.
    (1)求证:方程有两个不相等的实数根;
    (2)当方程有一个根为1时,求k的值.
    20.(6分)已知正方形ABCD的边长为2,作正方形AEFG(A,E,F,G四个顶点按逆时针方向排列),连接BE、GD,
    (1)如图①,当点E在正方形ABCD外时,线段BE与线段DG有何关系?直接写出结论;
    (2)如图②,当点E在线段BD的延长线上,射线BA与线段DG交于点M,且DG=2DM时,求边AG的长;
    (3)如图③,当点E在正方形ABCD的边CD所在的直线上,直线AB与直线DG交于点M,且DG=4DM时,直接写出边AG的长.

    21.(6分)均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走6 米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°,已如A点离地面的高度AB=4米,∠BCA=30°,且B、C、D 三点在同一直线上.

    (1)求树DE的高度;
    (2)求食堂MN的高度.
    22.(8分)先化简,再求值:,请你从﹣1≤x<3的范围内选取一个适当的整数作为x的值.
    23.(8分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.
    请根据图中提供的信息,回答下列问题:
    (1)a=   %,并补全条形图.
    (2)在本次抽样调查中,众数和中位数分别是多少?
    (3)如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?

    24.(10分)如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D求证:AC∥DE;若BF=13,EC=5,求BC的长.

    25.(10分)如图,△ABC中,点D在AB上,∠ACD=∠ABC,若AD=2,AB=6,求AC的长.

    26.(12分)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:1.
    (1)求此人所在位置点P的铅直高度.(结果精确到0.1米)
    (2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈,tan63.4°≈2)

    27.(12分)如图,直线与轴交于点,与轴交于点,且与双曲线的一个交点为,将直线在轴下方的部分沿轴翻折,得到一个“”形折线的新函数.若点是线段上一动点(不包括端点),过点作轴的平行线,与新函数交于另一点,与双曲线交于点.

    (1)若点的横坐标为,求的面积;(用含的式子表示)
    (2)探索:在点的运动过程中,四边形能否为平行四边形?若能,求出此时点的坐标;若不能,请说明理由.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    直接利用一次函数平移规律,即k不变,进而利用一次函数图象的性质得出答案.
    【详解】
    将一次函数向下平移2个单位后,得:

    当时,则:

    解得:,
    当时,,
    故选C.
    【点睛】
    本题主要考查了一次函数平移,解一元一次不等式,正确利用一次函数图象上点的坐标性质得出是解题关键.
    2、B
    【解析】
    延长AC交DE于点F,根据所给条件如果能推出∠α=∠1,则能使得AB∥DE,否则不能使得AB∥DE;
    【详解】
    延长AC交DE于点F.
    A. ∵∠α+∠β=180°,∠β=∠1+90°,
    ∴∠α=90°-∠1,即∠α≠∠1,
    ∴不能使得AB∥DE;
    B. ∵∠β﹣∠α=90°,∠β=∠1+90°,
    ∴∠α=∠1,
    ∴能使得AB∥DE;
    C.∵∠β=3∠α,∠β=∠1+90°,
    ∴3∠α=90°+∠1,即∠α≠∠1,
    ∴不能使得AB∥DE;
    D.∵∠α+∠β=90°,∠β=∠1+90°,
    ∴∠α=-∠1,即∠α≠∠1,
    ∴不能使得AB∥DE;
    故选B.

    【点睛】
    本题考查了平行线的判定方法:①两同位角相等,两直线平行; ②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行于同一直线的两条直线互相平行;同一平面内,垂直于同一直线的两条直线互相平行.
    3、B
    【解析】
    分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.
    详解:把6800000用科学记数法表示为6.8×1.
    故选B.
    点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    4、B
    【解析】
    根据一次函数的定义,可得答案.
    【详解】
    设等腰三角形的底角为y,顶角为x,由题意,得
    x+2y=180,
    所以,y=﹣x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,
    故选B.
    【点睛】
    本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.
    5、D
    【解析】
    根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.
    【详解】
    ∵0.45<0.51<0.62,
    ∴丁成绩最稳定,
    故选D.
    【点睛】
    此题主要考查了方差,关键是掌握方差越小,稳定性越大.
    6、C
    【解析】
    分三段讨论:
    ①两车从开始到相遇,这段时间两车距迅速减小;
    ②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;
    ③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;
    结合图象可得C选项符合题意.故选C.
    7、A
    【解析】
    解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.
    8、B
    【解析】
    先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.
    【详解】
    ∵四边形ABCD内接于⊙O,∠ABC=105°,
    ∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.
    ∵,∠BAC=25°,
    ∴∠DCE=∠BAC=25°,
    ∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.
    【点睛】
    本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.
    9、B
    【解析】
    解:原式====.
    故选B.
    考点:分式的混合运算.
    10、A
    【解析】
    根据图形,结合题目所给的运算法则列出方程组.
    【详解】
    图2所示的算筹图我们可以表述为:.
    故选A.
    【点睛】
    本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.
    11、C
    【解析】
    试题解析:A. 是轴对称图形,不是中心对称图形,故本选项错误;
    B. 是轴对称图形,不是中心对称图形,故本选项错误;
    C. 既是中心对称图又是轴对称图形,故本选项正确;
    D. 是轴对称图形,不是中心对称图形,故本选项错误.
    故选C.
    12、B
    【解析】
    分析:分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.
    详解:如图,

    当h<2时,有-(2-h)2=-1,
    解得:h1=1,h2=3(舍去);
    当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;
    当h>5时,有-(5-h)2=-1,
    解得:h3=4(舍去),h4=1.
    综上所述:h的值为1或1.
    故选B.
    点睛:本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、①③⑤
    【解析】
    ①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等; 
    ②过B作BF⊥AE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF; 
    ③利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证; 
    ④连接BD,求出△ABD的面积,然后减去△BDP的面积即可; 
    ⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面积.
    【详解】
    ①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°, 
    ∴∠EAB=∠PAD, 
    又∵AE=AP,AB=AD, 
    ∵在△APD和△AEB中, 
    , 
    ∴△APD≌△AEB(SAS); 
    故此选项成立; 
    ③∵△APD≌△AEB, 
    ∴∠APD=∠AEB, 
    ∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE, 
    ∴∠BEP=∠PAE=90°, 
    ∴EB⊥ED; 
    故此选项成立; 
    ②过B作BF⊥AE,交AE的延长线于F, 
    ∵AE=AP,∠EAP=90°, 
    ∴∠AEP=∠APE=45°, 
    又∵③中EB⊥ED,BF⊥AF, 
    ∴∠FEB=∠FBE=45°, 
    又∵BE= = = , 
    ∴BF=EF= , 
    故此选项不正确; 
    ④如图,连接BD,在Rt△AEP中,
     
    ∵AE=AP=1, 
    ∴EP= , 
    又∵PB= , 
    ∴BE= , 
    ∵△APD≌△AEB, 
    ∴PD=BE= , 
    ∴S △ABP+S △ADP=S △ABD-S △BDP= S 正方形ABCD- ×DP×BE= ×(4+ )- × × = + . 
    故此选项不正确. 
    ⑤∵EF=BF= ,AE=1, 
    ∴在Rt△ABF中,AB 2=(AE+EF) 2+BF 2=4+ , 
    ∴S 正方形ABCD=AB 2=4+ , 
    故此选项正确. 
    故答案为①③⑤.
    【点睛】
    本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识.
    14、
    【解析】
    由折叠的性质可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的长,即可求MN的长.
    【详解】
    设MN与OP交于点E,

    ∵点O、P的距离为4,
    ∴OP=4
    ∵折叠
    ∴MN⊥OP,EO=EP=2,
    在Rt△OME中,ME=
    在Rt△ONE中,NE=
    ∴MN=ME-NE=2-
    故答案为2-
    【点睛】
    本题考查了翻折变换,勾股定理,利用勾股定理求线段的长度是本题的关键.
    15、.
    【解析】
    试题解析:∵原计划用的时间为:
    实际用的时间为:
    ∴可列方程为:
    故答案为
    16、
    【解析】
    先提公因式b,然后再运用完全平方公式进行分解即可.
    【详解】
    a2b﹣4ab+4b
    =b(a2﹣4a+4)
    =b(a﹣2)2,
    故答案为b(a﹣2)2.
    【点睛】
    本题考查了利用提公因式法与公式法分解因式,熟练掌握完全平方公式的结构特征是解本题的关键.
    17、x=1
    【解析】
    把解析式化为顶点式可求得答案.
    【详解】
    解:∵y=x2-2x+3=(x-1)2+2,
    ∴对称轴是直线x=1,
    故答案为x=1.
    【点睛】
    本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).
    18、
    【解析】
    摸三次有可能有:红红红、红红蓝、红蓝红、红蓝蓝、蓝红红、蓝红蓝、蓝蓝红、蓝蓝蓝共计8种可能,其中仅有一个红坏的有:红蓝蓝、蓝红蓝、蓝蓝红共计3种,所以“仅有一次摸到红球”的概率是.
    故答案是:.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(2)证明见解析;(2)k2=2,k2=2.
    【解析】
    (2)套入数据求出△=b2﹣4ac的值,再与2作比较,由于△=2>2,从而证出方程有两个不相等的实数根;
    (2)将x=2代入原方程,得出关于k的一元二次方程,解方程即可求出k的值.
    【详解】
    (2)证明:△=b2﹣4ac,
    =[﹣(2k+2)]2﹣4(k2+k),
    =4k2+4k+2﹣4k2﹣4k,
    =2>2.
    ∴方程有两个不相等的实数根;
    (2)∵方程有一个根为2,
    ∴22﹣(2k+2)+k2+k=2,即k2﹣k=2,
    解得:k2=2,k2=2.
    【点睛】
    本题考查了根的判别式以及解一元二次方程,解题的关键是:(2)求出△=b2﹣4ac的值;(2)代入x=2得出关于k的一元二次方程.本题属于基础题,难度不大,解决该题型题目时,由根的判别式来判断实数根的个数是关键.
    20、(1)结论:BE=DG,BE⊥DG.理由见解析;(1)AG=1;(3)满足条件的AG的长为1或1.
    【解析】
    (1)结论:BE=DG,BE⊥DG.只要证明△BAE≌△DAG(SAS),即可解决问题;
    (1)如图②中,连接EG,作GH⊥AD交DA的延长线于H.由A,D,E,G四点共圆,推出∠ADO=∠AEG=45°,解直角三角形即可解决问题;
    (3)分两种情形分别画出图形即可解决问题;
    【详解】
    (1)结论:BE=DG,BE⊥DG.

    理由:如图①中,设BE交DG于点K,AE交DG于点O.
    ∵四边形ABCD,四边形AEFG都是正方形,
    ∴AB=AD,AE=AG,∠BAD=∠EAG=90°,
    ∴∠BAE=∠DAG,
    ∴△BAE≌△DAG(SAS),
    ∴BE=DG,∴∠AEB=∠AGD,
    ∵∠AOG=∠EOK,
    ∴∠OAG=∠OKE=90°,
    ∴BE⊥DG.
    (1)如图②中,连接EG,作GH⊥AD交DA的延长线于H.

    ∵∠OAG=∠ODE=90°,
    ∴A,D,E,G四点共圆,
    ∴∠ADO=∠AEG=45°,
    ∵∠DAM=90°,
    ∴∠ADM=∠AMD=45°,

    ∵DG=1DM,

    ∵∠H=90°,
    ∴∠HDG=∠HGD=45°,
    ∴GH=DH=4,
    ∴AH=1,
    在Rt△AHG中,
    (3)①如图③中,当点E在CD的延长线上时.作GH⊥DA交DA的延长线于H.

    易证△AHG≌△EDA,可得GH=AB=1,
    ∵DG=4DM.AM∥GH,

    ∴DH=8,
    ∴AH=DH﹣AD=6,
    在Rt△AHG中,
    ②如图3﹣1中,当点E在DC的延长线上时,易证:△AKE≌△GHA,可得AH=EK=BC=1.

    ∵AD∥GH,

    ∵AD=1,
    ∴HG=10,
    在Rt△AGH中,
    综上所述,满足条件的AG的长为或.
    【点睛】
    本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,平行线分线段成比例定理,等腰直角三角形的性质和判定,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
    21、(1)12米;(2)(2+8)米
    【解析】
    (1)设DE=x,先证明△ACE是直角三角形,∠CAE=60°,∠AEC=30°,得到AE=16,根据EF=8求出x的值得到答案;
    (2)延长NM交DB延长线于点P,先分别求出PB、CD得到PD,利用∠NDP=45°得到NP,即可求出MN.
    【详解】
    (1)如图,设DE=x,
    ∵AB=DF=4,∠ACB=30°,
    ∴AC=8,
    ∵∠ECD=60°,
    ∴△ACE是直角三角形,
    ∵AF∥BD,
    ∴∠CAF=30°,
    ∴∠CAE=60°,∠AEC=30°,
    ∴AE=16,
    ∴Rt△AEF中,EF=8,
    即x﹣4=8,
    解得x=12,
    ∴树DE的高度为12米;
    (2)延长NM交DB延长线于点P,则AM=BP=6,
    由(1)知CD=CE=×AC=4,BC=4,
    ∴PD=BP+BC+CD=6+4+4=6+8,
    ∵∠NDP=45°,且∠NPD=90°,
    ∴NP=PD=6+8,
    ∴NM=NP﹣MP=6+8﹣4=2+8,
    ∴食堂MN的高度为(2+8)米.

    【点睛】
    此题是解直角三角形的实际应用,考查直角三角形的性质,30°角所对的直角边等于斜边的一半,锐角三角函数,将已知的线段及角放在相应的直角三角形中利用三角函数解题,由此做相应的辅助线是解题的关键.
    22、1.
    【解析】
    根据分式的化简法则:先算括号里的,再算乘除,最后算加减.对不同分母的先通分,按同分母分式加减法计算,且要把复杂的因式分解因式,最后约分,化简完后再代入求值,但是不能代入-1,0,1,保证分式有意义.
    【详解】
    解:
    =
    =
    =
    =
    当x=2时,原式==1.
    【点睛】
    本题考查分式的化简求值及分式成立的条件,掌握运算法则准确计算是本题的解题关键.
    23、(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人.
    【解析】
    (1)用1减去其他天数所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;
    (2)根据众数和中位数的定义即可求出答案;
    (3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案.
    【详解】
    解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,
    该扇形所对圆心角的度数为310°×10%=31°,
    参加社会实践活动的天数为8天的人数是:×10%=10(人),补图如下:

    故答案为10;
    (2)抽样调查中总人数为100人,
    结合条形统计图可得:众数是5,中位数是1.
    (3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),
    活动时间不少于1天的学生人数大约有5400人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    24、(1)证明见解析;(2)4.
    【解析】
    (1)首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE;(2)根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案.
    【详解】
    解:(1)在△ABC和△DFE中

    ∴△ABC≌△DFE(SAS),
    ∴∠ACE=∠DEF,
    ∴AC∥DE;
    (2)∵△ABC≌△DFE,
    ∴BC=EF,
    ∴CB﹣EC=EF﹣EC,
    ∴EB=CF,
    ∵BF=13,EC=5,
    ∴EB=4,
    ∴CB=4+5=1.
    【点睛】
    考点:全等三角形的判定与性质.
    25、.
    【解析】
    试题分析:可证明△ACD∽△ABC,则,即得出AC2=AD•AB,从而得出AC的长.
    试题解析:∵∠ACD=∠ABC,∠A=∠A, ∴△ACD∽△ABC. ∴,∵AD=2,AB=6,∴.∴.∴AC=.
    考点:相似三角形的判定与性质.
    26、(1)此人所在P的铅直高度约为14.3米;(2)从P到点B的路程约为17.1米
    【解析】
    分析:(1)过P作PF⊥BD于F,作PE⊥AB于E,设PF=5x,在Rt△ABC中求出AB,用含x的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的长.
    详解:过P作PF⊥BD于F,作PE⊥AB于E,
    ∵斜坡的坡度i=5:1,
    设PF=5x,CF=1x,
    ∵四边形BFPE为矩形,
    ∴BF=PEPF=BE.
    在RT△ABC中,BC=90,
    tan∠ACB=,
    ∴AB=tan63.4°×BC≈2×90=180,
    ∴AE=AB-BE=AB-PF=180-5x,
    EP=BC+CF≈90+10x.
    在RT△AEP中,
    tan∠APE=,
    ∴x=,
    ∴PF=5x=.
    答:此人所在P的铅直高度约为14.3米.

    由(1)得CP=13x,
    ∴CP=13×37.1,BC+CP=90+37.1=17.1.
    答:从P到点B的路程约为17.1米.
    点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,构造直角三角形,用勾股定理或三角函数求相应的线段长.
    27、(1);(2)不能成为平行四边形,理由见解析
    【解析】
    (1)将点B坐标代入一次函数上可得出点B的坐标,由点B的坐标,利用待定系数法可求出反比例函数解析式,根据点的坐标为,可以判断出,再由点P的横坐标可得出点P的坐标是,结合PD∥x轴可得出点D的坐标,再利用三角形的面积公式即可用含的式子表示出△MPD的面积;
    (2)当P为BM的中点时,利用中点坐标公式可得出点P的坐标,结合PD∥x轴可得出点D的坐标,由折叠的性质可得出直线MN的解析式,利用一次函数图象上点的坐标特征可得出点C的坐标,由点P,C,D的坐标可得出PD≠PC,由此即可得出四边形BDMC不能成为平行四边形.
    【详解】
    解:(1)∵点在直线上,
    ∴.
    ∵点在的图像上,
    ∴,∴.
    设,
    则.
    ∵∴.
    记的面积为,



    (2)当点为中点时,其坐标为,
    ∴.
    ∵直线在轴下方的部分沿轴翻折得表示的函数表达式是:,
    ∴,
    ∴,
    ∴与不能互相平分,
    ∴四边形不能成为平行四边形.
    【点睛】
    本题考查了一次函数图象上点的坐标特征、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特征、三角形的面积、折叠的性质以及平行四边形的判定,解题的关键是:(1)利用一次(反比例)函数图象上点的坐标特征,找出点P,M,D的坐标;(2)利用平行四边形的对角线互相平分,找出四边形BDMC不能成为平行四边形.

    相关试卷

    天津市西青区2021-2022学年中考数学全真模拟试题含解析: 这是一份天津市西青区2021-2022学年中考数学全真模拟试题含解析,共25页。试卷主要包含了不等式﹣x+1>3的解集是等内容,欢迎下载使用。

    江苏省常州市名校2021-2022学年中考数学全真模拟试题含解析: 这是一份江苏省常州市名校2021-2022学年中考数学全真模拟试题含解析,共27页。试卷主要包含了下列算式的运算结果正确的是,的倒数是,7的相反数是等内容,欢迎下载使用。

    2021-2022学年天津市大港区名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2021-2022学年天津市大港区名校中考数学最后冲刺浓缩精华卷含解析,共21页。试卷主要包含了估计介于等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map