天津市大港区名校2021-2022学年中考适应性考试数学试题含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.如图,平行四边形ABCD的顶点A、B、D在⊙O上,顶点C在⊙O直径BE上,连结AE,若∠E=36°,则∠ADC的度数是( )
A.44° B.53° C.72° D.54°
2.七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:
甲组 | 158 | 159 | 160 | 160 | 160 | 161 | 169 |
乙组 | 158 | 159 | 160 | 161 | 161 | 163 | 165 |
以下叙述错误的是( )
A.甲组同学身高的众数是160
B.乙组同学身高的中位数是161
C.甲组同学身高的平均数是161
D.两组相比,乙组同学身高的方差大
3.如图,直线a∥b,直线c与直线a、b分别交于点A、点B,AC⊥AB于点A,交直线b于点C.如果∠1=34°,那么∠2的度数为( )
A.34° B.56° C.66° D.146°
4.有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是( )
A. B. C. D.
5.在实数π,0,,﹣4中,最大的是( )
A.π B.0 C. D.﹣4
6.扇形的半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,则圆锥底面半径为( )
A.10cm B.20cm C.10πcm D.20πcm
7.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是( )
A.16 B.17 C.18 D.19
8.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是( )
A.3 B.﹣3 C.6 D.﹣6
9.若关于x的一元二次方程x(x+2)=m总有两个不相等的实数根,则( )
A.m<﹣1 B.m>1 C.m>﹣1 D.m<1
10.已知实数a、b满足,则
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于______.
12.把多项式3x2-12因式分解的结果是_____________.
13.如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,…,An,分别过这些点做x轴的垂线与反比例函数y=的图象相交于点P1,P2,P3,P4,…Pn,再分别过P2,P3,P4,…Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,PnBn﹣1⊥An﹣1Pn﹣1,垂足分别为B1,B2,B3,B4,…,Bn﹣1,连接P1P2,P2P3,P3P4,…,Pn﹣1Pn,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△Pn﹣1Bn﹣1Pn,则Rt△Pn﹣1Bn﹣1Pn的面积为_____.
14.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是_____.
15.如图,CD是⊙O直径,AB是弦,若CD⊥AB,∠BCD=25°,则∠AOD=_____°.
16.如图所示,矩形ABCD的顶点D在反比例函数(x<0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,△BCE的面积是6,则k=_____.
三、解答题(共8题,共72分)
17.(8分)如图,在中,,,点D是BC上任意一点,将线段AD绕点A逆时针方向旋转,得到线段AE,连结EC.
依题意补全图形;
求的度数;
若,,将射线DA绕点D顺时针旋转交EC的延长线于点F,请写出求AF长的思路.
18.(8分) 如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),抛物线的对称轴直线x=交x轴于点D.
(1)求抛物线的解析式;
(2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;
(3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
19.(8分)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.
(1)求证:△AGE≌△BGF;
(2)试判断四边形AFBE的形状,并说明理由.
20.(8分)如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.
(1)用a,b,x表示纸片剩余部分的面积;
(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.
21.(8分)如图,在中,,是边上的高线,平分交于点,经过,两点的交于点,交于点,为的直径.
(1)求证:是的切线;
(2)当,时,求的半径.
22.(10分)如图,在五边形ABCDE中,∠C=100°,∠D=75°,∠E=135°,AP平分∠EAB,BP平分∠ABC,求∠P的度数.
23.(12分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
(1)甲、乙两工程队每天能改造道路的长度分别是多少米?
(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?
24.已知:如图,在△OAB中,OA=OB,⊙O经过AB的中点C,与OB交于点D,且与BO的延长线交于点E,连接EC,CD.
(1)试判断AB与⊙O的位置关系,并加以证明;
(2)若tanE=,⊙O的半径为3,求OA的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
根据直径所对的圆周角为直角可得∠BAE=90°,再根据直角三角形的性质和平行四边形的性质可得解.
【详解】
根据直径所对的圆周角为直角可得∠BAE=90°,
根据∠E=36°可得∠B=54°,
根据平行四边形的性质可得∠ADC=∠B=54°.
故选D
【点睛】
本题考查了平行四边形的性质、圆的基本性质.
2、D
【解析】
根据众数、中位数和平均数及方差的定义逐一判断可得.
【详解】
A.甲组同学身高的众数是160,此选项正确;
B.乙组同学身高的中位数是161,此选项正确;
C.甲组同学身高的平均数是161,此选项正确;
D.甲组的方差为,乙组的方差为,甲组的方差大,此选项错误.
故选D.
【点睛】
本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键.
3、B
【解析】
分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.
详解:∵直线a∥b,∴∠2+∠BAD=180°.
∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.
故选B.
点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.
4、B
【解析】
解:将两把不同的锁分别用A与B表示,三把钥匙分别用A,B与C表示,且A钥匙能打开A锁,B钥匙能打开B锁,画树状图得:
∵共有6种等可能的结果,一次打开锁的有2种情况,∴一次打开锁的概率为:.故选B.
点睛:本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
5、C
【解析】
根据实数的大小比较即可得到答案.
【详解】
解:∵16<17<25,∴4<<5,∴>π>0>-4,故最大的是,故答案选C.
【点睛】
本题主要考查了实数的大小比较,解本题的要点在于统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.
6、A
【解析】
试题解析:扇形的弧长为:=20πcm,
∴圆锥底面半径为20π÷2π=10cm,
故选A.
考点:圆锥的计算.
7、A
【解析】
一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1)边形.故当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.
故选A.
【点睛】
此题主要考查了多边形,减去一个角的方法可能有三种:经过两个相邻点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.
8、D
【解析】
试题分析:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故选D.
考点:反比例函数系数k的几何意义.
9、C
【解析】
将关于x的一元二次方程化成标准形式,然后利用Δ>0,即得m的取值范围.
【详解】
因为方程是关于x的一元二次方程方程,所以可得,Δ=4+4m > 0,解得m>﹣1,故选D.
【点睛】
本题熟练掌握一元二次方程的基本概念是本题的解题关键.
10、C
【解析】
根据不等式的性质进行判断.
【详解】
解:A、,但不一定成立,例如:,故本选项错误;
B、,但不一定成立,例如:,,故本选项错误;
C、时,成立,故本选项正确;
D、时,成立,则不一定成立,故本选项错误;
故选C.
【点睛】
考查了不等式的性质要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以或除以同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
此题考查了二次函数的最值,勾股定理,等腰三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.
【详解】
过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,则BF+CM是这两个二次函数的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE= ,设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出= ,代入求出BF和CM,相加即可求出答案.
过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,
∵BF⊥OA,DE⊥OA,CM⊥OA,
∴BF∥DE∥CM.
∵OD=AD=3,DE⊥OA,
∴OE=EA= OA=2,
由勾股定理得:DE= =5,设P(2x,0),根据二次函数的对称性得出OF=PF=x,
∵BF∥DE∥CM,
∴△OBF∽△ODE,△ACM∽△ADE,
∴,
∵AM=PM= (OA-OP)= (4-2x)=2-x,
即,
解得:
∴BF+CM= .
故答案为.
【点睛】
考核知识点:二次函数综合题.熟记性质,数形结合是关键.
12、3(x+2)(x-2)
【解析】
因式分解时首先考虑提公因式,再考虑运用公式法;多项式3x2-12因式分解先提公因式3,再利用平方差公式因式分解.
【详解】
3x2-12=3()=3.
13、
【解析】
解:设OA1=A1A2=A2A3=…=An-2An-1=An-1An=a,
∵当x=a时,,∴P1的坐标为(a,),
当x=2a时,,∴P2的坐标为(2a,),
……
∴Rt△P1B1P2的面积为,
Rt△P2B2P3的面积为,
Rt△P3B3P4的面积为,
……
∴Rt△Pn-1Bn-1Pn的面积为.
故答案为:
14、-3<x<1
【解析】
试题分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.
解:根据抛物线的图象可知:
抛物线的对称轴为x=﹣1,已知一个交点为(1,0),
根据对称性,则另一交点为(﹣3,0),
所以y>0时,x的取值范围是﹣3<x<1.
故答案为﹣3<x<1.
考点:二次函数的图象.
15、50
【解析】
由CD是⊙O的直径,弦AB⊥CD,根据垂径定理的即可求得
=,又由圆周角定理,可得∠AOD=50°.
【详解】
∵CD是⊙O的直径,弦AB⊥CD,
∴=,
∵∠BCD=25°=,
∴∠AOD=2∠BCD=50°,
故答案为50
【点睛】
本题考查角度的求解,解题的关键是利用垂径定理.
16、-1
【解析】
先设D(a,b),得出CO=-a,CD=AB=b,k=ab,再根据△BCE的面积是6,得出BC×OE=1,最后根据AB∥OE,得出,即BC•EO=AB•CO,求得ab的值即可.
【详解】
设D(a,b),则CO=-a,CD=AB=b,
∵矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,
∴k=ab,
∵△BCE的面积是6,
∴×BC×OE=6,即BC×OE=1,
∵AB∥OE,
∴,即BC•EO=AB•CO,
∴1=b×(-a),即ab=-1,
∴k=-1,
故答案为-1.
【点睛】
本题主要考查了反比例函数系数k的几何意义,矩形的性质以及平行线分线段成比例定理的综合应用,能很好地考核学生分析问题,解决问题的能力.解题的关键是将△BCE的面积与点D的坐标联系在一起,体现了数形结合的思想方法.
三、解答题(共8题,共72分)
17、(1)见解析;(2)90°;(3)解题思路见解析.
【解析】
(1)将线段AD绕点A逆时针方向旋转90°,得到线段AE,连结EC.
(2)先判定△ABD≌△ACE,即可得到,再根据,即可得出;
(3)连接DE,由于△ADE为等腰直角三角形,所以可求;由, ,可求的度数和的度数,从而可知DF的长;过点A作于点H,在Rt△ADH中,由,AD=1可求AH、DH的长;由DF、DH的长可求HF的长;在Rt△AHF中,由AH和HF,利用勾股定理可求AF的长.
【详解】
解:如图,
线段AD绕点A逆时针方向旋转,得到线段AE.
,,
.
,
.
,
在和中
,
≌.
,
中,,,
.
;
Ⅰ连接DE,由于为等腰直角三角形,所以可求;
Ⅱ由,,可求的度数和的度数,从而可知DF的长;
Ⅲ过点A作于点H,在中,由,可求AH、DH的长;
Ⅳ由DF、DH的长可求HF的长;
Ⅴ在中,由AH和HF,利用勾股定理可求AF的长.
故答案为(1)见解析;(2)90°;(3)解题思路见解析.
【点睛】
本题主要考查旋转的性质,等腰直角三角形的性质的运用,解题的关键是要注意对应点与旋转中心所连线段的夹角等于旋转角.
18、(1) ;(1) ,E(1,1);(3)存在,P点坐标可以为(1+,5)或(3,5).
【解析】
(1)设B(x1,5),由已知条件得 ,进而得到B(2,5).又由对称轴求得b.最终得到抛物线解析式.
(1)先求出直线BC的解析式,再设E(m,=﹣m+1.),F(m,﹣m1+m+1.)
求得FE的值,得到S△CBF﹣m1+2m.又由S四边形CDBF=S△CBF+S△CDB,得S四边形CDBF最大值, 最终得到E点坐标.
(3)设N点为(n,﹣n1+n+1),1<n<2.过N作NO⊥x轴于点P,得PG=n﹣1.
又由直角三角形的判定,得△ABC为直角三角形,由△ABC∽△GNP, 得n=1+或n=1﹣(舍去),求得P点坐标.又由△ABC∽△GNP,且时,
得n=3或n=﹣2(舍去).求得P点坐标.
【详解】
解:(1)设B(x1,5).由A(﹣1,5),对称轴直线x= .
∴
解得,x1=2.
∴B(2,5).
又∵
∴b=.
∴抛物线解析式为y= ,
(1)如图1,
∵B(2,5),C(5,1).
∴直线BC的解析式为y=﹣x+1.
由E在直线BC上,则设E(m,=﹣m+1.),F(m,﹣m1+m+1.)
∴FE=﹣m1+m+1﹣(﹣n+1)=﹣m1+1m.
由S△CBF=EF•OB,
∴S△CBF=(﹣m1+1m)×2=﹣m1+2m.
又∵S△CDB=BD•OC=×(2﹣)×1=
∴S四边形CDBF=S△CBF+S△CDB═﹣m1+2m+.
化为顶点式得,S四边形CDBF=﹣(m﹣1)1+ .
当m=1时,S四边形CDBF最大,为.
此时,E点坐标为(1,1).
(3)存在.
如图1,
由线段FG绕点G顺时针旋转一个角α(5°<α<95°),设N(n,﹣n1+n+1),1<n<2.
过N作NO⊥x轴于点P(n,5).
∴NP=﹣n1+n+1,PG=n﹣1.
又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.
AB1=51=15.
∴AC1+BC1=AB1.
∴△ABC为直角三角形.
当△ABC∽△GNP,且时,
即,
整理得,n1﹣1n﹣6=5.
解得,n=1+ 或n=1﹣(舍去).
此时P点坐标为(1+,5).
当△ABC∽△GNP,且时,
即,
整理得,n1+n﹣11=5.
解得,n=3或n=﹣2(舍去).
此时P点坐标为(3,5).
综上所述,满足题意的P点坐标可以为,(1+,5),(3,5).
【点睛】
本题考查求抛物线,三角形的性质和面积的求法,直角三角形的判定,以及三角形相似的性质,属于较难题.
19、 (1)证明见解析(2)四边形AFBE是菱形
【解析】
试题分析:(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF即可;
(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.
试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,∵∠AEG=∠BFG,∠AGE=∠BGF,AG=BG,∴△AGE≌△BGF(AAS);
(2)解:四边形AFBE是菱形,理由如下:
∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形.
考点:平行四边形的性质;全等三角形的判定与性质;线段垂直平分线的性质;探究型.
20、(1)ab﹣4x1(1)
【解析】
(1)边长为x的正方形面积为x1,矩形面积减去4个小正方形的面积即可.
(1)依据剪去部分的面积等于剩余部分的面积,列方程求出x的值即可.
【详解】
解:(1)ab﹣4x1.
(1)依题意有:,将a=6,b=4,代入上式,得x1=2.
解得x1=,x1=(舍去).
∴正方形的边长为.
21、(1)见解析;(2)的半径是.
【解析】
(1)连结,易证,由于是边上的高线,从而可知,所以是的切线.
(2)由于,从而可知,由,可知:,易证,所以,再证明,所以,从而可求出.
【详解】
解:(1)连结.
∵平分,
∴,又,
∴,
∴,
∵是边上的高线,
∴,
∴,
∴是的切线.
(2)∵,
∴,,
∴是中点,
∴,
∵,
∴,
∵,,
∴,
∴,
又∵,
∴,
在中,
,
∴,
∴,
,
而,
∴,
∴,
∴的半径是.
【点睛】
本题考查圆的综合问题,涉及锐角三角函数,相似三角形的判定与性质,等腰三角形的性质等知识,综合程度较高,需要学生综合运用知识的能力.
22、65°
【解析】
∵∠EAB+∠ABC+∠C+∠D+∠E=(5-2)×180°=540°,∠C=100°,∠D=75°,∠E=135°,
∴∠EAB+∠ABC=540°-∠C-∠D-∠E=230°.
∵AP平分∠EAB,
∴∠PAB=12∠EAB.
同理可得,∠ABP=∠ABC.
∵∠P+∠PAB+∠PBA=180°,
∴∠P=180°-∠PAB-∠PBA=180°-∠EAB-∠ABC=180°-(∠EAB+∠ABC)=180°-×230°=65°.
23、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.
【解析】
(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.
【详解】
(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,
根据题意得:,
解得:x=40,
经检验,x=40是原分式方程的解,且符合题意,
∴x=×40=60,
答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;
(2)设安排甲队工作m天,则安排乙队工作天,
根据题意得:7m+5×≤145,
解得:m≥10,
答:至少安排甲队工作10天.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.
24、(1)AB与⊙O的位置关系是相切,证明见解析;(2)OA=1.
【解析】
(1)先判断AB与⊙O的位置关系,然后根据等腰三角形的性质即可解答本题;
(2)根据题三角形的相似可以求得BD的长,从而可以得到OA的长.
【详解】
解:(1)AB与⊙O的位置关系是相切,
证明:如图,连接OC.
∵OA=OB,C为AB的中点,
∴OC⊥AB.
∴AB是⊙O的切线;
(2)∵ED是直径,
∴∠ECD=90°.
∴∠E+∠ODC=90°.
又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,
∴∠BCD=∠E.
又∵∠CBD=∠EBC,
∴△BCD∽△BEC.
∴.
∴BC2=BD•BE.
∵,
∴.
∴.
设BD=x,则BC=2x.
又BC2=BD•BE,
∴(2x)2=x(x+6).
解得x1=0,x2=2.
∵BD=x>0,
∴BD=2.
∴OA=OB=BD+OD=2+3=1.
【点睛】
本题考查直线和圆的位置关系、等腰三角形的性质、三角形的相似,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
孝感市市级名校2021-2022学年中考适应性考试数学试题含解析: 这是一份孝感市市级名校2021-2022学年中考适应性考试数学试题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列代数运算正确的是,下列命题是真命题的是等内容,欢迎下载使用。
2021-2022学年重庆巴川小班重点名校中考适应性考试数学试题含解析: 这是一份2021-2022学年重庆巴川小班重点名校中考适应性考试数学试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,实数﹣5.22的绝对值是,不等式组 的整数解有等内容,欢迎下载使用。
2021-2022学年云南省文山市达标名校中考适应性考试数学试题含解析: 这是一份2021-2022学年云南省文山市达标名校中考适应性考试数学试题含解析,共24页。试卷主要包含了化简的结果是等内容,欢迎下载使用。