|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年浙江省杭州市保俶塔中学中考四模数学试题含解析
    立即下载
    加入资料篮
    2021-2022学年浙江省杭州市保俶塔中学中考四模数学试题含解析01
    2021-2022学年浙江省杭州市保俶塔中学中考四模数学试题含解析02
    2021-2022学年浙江省杭州市保俶塔中学中考四模数学试题含解析03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年浙江省杭州市保俶塔中学中考四模数学试题含解析

    展开
    这是一份2021-2022学年浙江省杭州市保俶塔中学中考四模数学试题含解析,共18页。试卷主要包含了二次函数y=3,下面运算结果为的是等内容,欢迎下载使用。

    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数( )
    A.平均数 B.中位数 C.众数 D.方差
    2.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为( )
    A.16B.14C.12D.10
    3.下列大学的校徽图案是轴对称图形的是( )
    A.B.C.D.
    4.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且−2≤x≤1时,y的最大值为9,则a的值为
    A.1或−2 B.−或
    C. D.1
    5.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为( )
    A.1B.3C.5D.1或5
    6.若代数式的值为零,则实数x的值为( )
    A.x=0B.x≠0C.x=3D.x≠3
    7.二次函数y=3(x﹣1)2+2,下列说法正确的是( )
    A.图象的开口向下
    B.图象的顶点坐标是(1,2)
    C.当x>1时,y随x的增大而减小
    D.图象与y轴的交点坐标为(0,2)
    8.下面运算结果为的是
    A.B.C.D.
    9.如图,已知,那么下列结论正确的是( )
    A.B.C.D.
    10.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为( )
    A.4.995×1011B.49.95×1010
    C.0.4995×1011D.4.995×1010
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图是我区某一天内的气温变化图,结合该图给出的信息写出一个正确的结论:________.
    12.已知,,,是成比例的线段,其中,,,则_______.
    13.若关于x的方程x2-x+sinα=0有两个相等的实数根,则锐角α的度数为___.
    14.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.
    15.已知关于x的一元二次方程kx2+3x﹣4k+6=0有两个相等的实数根,则该实数根是_____.
    16.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为____.
    17.如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1= 度.
    三、解答题(共7小题,满分69分)
    18.(10分)商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场
    决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2
    件.设每件商品降价x元. 据此规律,请回答:
    (1)商场日销售量增加 ▲ 件,每件商品盈利 ▲ 元(用含x的代数式表示);
    (2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?
    19.(5分)(8分)如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=1.
    (1)求直线AB和反比例函数的解析式;
    (1)求△OCD的面积.
    20.(8分)某公司对用户满意度进行问卷调查,将连续6天内每天收回的问卷数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第3天的频数是2.请你回答:
    (1)收回问卷最多的一天共收到问卷_________份;
    (2)本次活动共收回问卷共_________份;
    (3)市场部对收回的问卷统一进行了编号,通过电脑程序随机抽选一个编号,抽到问卷是第4天收回的概率是多少?
    (4)按照(3)中的模式随机抽选若干编号,确定幸运用户发放纪念奖,第4天和第6天分别有10份和2份获奖,那么你认为这两组中哪个组获奖率较高?为什么?
    21.(10分)给定关于x的二次函数y=kx2﹣4kx+3(k≠0),当该二次函数与x轴只有一个公共点时,求k的值;当该二次函数与x轴有2个公共点时,设这两个公共点为A、B,已知AB=2,求k的值;由于k的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:
    ①与y轴的交点不变;②对称轴不变;③一定经过两个定点;
    请判断以上结论是否正确,并说明理由.
    22.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.
    (1)求证:△ADC∽△CDB;
    (2)若AC=2,AB=CD,求⊙O半径.
    23.(12分)如图,在平行四边形ABCD中,DB⊥AB,点E是BC边的中点,过点E作EF⊥CD,垂足为F,交AB的延长线于点G.
    (1)求证:四边形BDFG是矩形;
    (2)若AE平分∠BAD,求tan∠BAE的值.
    24.(14分)如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0(1)求点A、B、D的坐标;
    (2)若△AOD与△BPC相似,求a的值;
    (3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.
    参考答案
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】解:根据中位数的意义,故只要知道中位数就可以了.故选B.
    2、B
    【解析】
    根据切线长定理进行求解即可.
    【详解】
    ∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,
    ∴AF=AD=2,BD=BE,CE=CF,
    ∵BE+CE=BC=5,
    ∴BD+CF=BC=5,
    ∴△ABC的周长=2+2+5+5=14,
    故选B.
    【点睛】
    本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.
    3、B
    【解析】
    根据轴对称图形的概念对各选项分析判断即可得解.
    【详解】
    解:A、不是轴对称图形,故本选项错误;
    B、是轴对称图形,故本选项正确;
    C、不是轴对称图形,故本选项错误;
    D、不是轴对称图形,故本选项错误.
    故选:B.
    【点睛】
    本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    4、D
    【解析】
    先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由-2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.
    【详解】
    ∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),
    ∴对称轴是直线x=-=-1,
    ∵当x≥2时,y随x的增大而增大,
    ∴a>0,
    ∵-2≤x≤1时,y的最大值为9,
    ∴x=1时,y=a+2a+3a2+3=9,
    ∴3a2+3a-6=0,
    ∴a=1,或a=-2(不合题意舍去).
    故选D.
    【点睛】
    本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-时,y随x的增大而减小;x>-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-时,y随x的增大而增大;x>-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点.
    5、D
    【解析】
    分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.
    【详解】
    当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,
    当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,
    故选D.
    【点睛】
    本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.
    6、A
    【解析】
    根据分子为零,且分母不为零解答即可.
    【详解】
    解:∵代数式的值为零,
    ∴x=0,
    此时分母x-3≠0,符合题意.
    故选A.
    【点睛】
    本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.
    7、B
    【解析】
    由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案.
    【详解】
    解:A、因为a=3>0,所以开口向上,错误;
    B、顶点坐标是(1,2),正确;
    C、当x>1时,y随x增大而增大,错误;
    D、图象与y轴的交点坐标为(0,5),错误;
    故选:B.
    【点睛】
    考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).
    8、B
    【解析】
    根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.
    【详解】
    . ,此选项不符合题意;
    .,此选项符合题意;
    .,此选项不符合题意;
    .,此选项不符合题意;
    故选:.
    【点睛】
    本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.
    9、A
    【解析】
    已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.
    【详解】
    ∵AB∥CD∥EF,
    ∴.
    故选A.
    【点睛】
    本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.
    10、D
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.
    【详解】
    将499.5亿用科学记数法表示为:4.995×1.
    故选D.
    【点睛】
    此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    二、填空题(共7小题,每小题3分,满分21分)
    11、这一天的最高气温约是26°
    【解析】
    根据我区某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.
    【详解】
    解:根据图象可得这一天的最高气温约是26°,
    故答案为:这一天的最高气温约是26°.
    【点睛】
    本题考查的是函数图象问题,统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
    12、
    【解析】
    如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb,将a,b及c的值代入即可求得d.
    【详解】
    已知a,b,c,d是成比例线段,
    根据比例线段的定义得:ad=cb,
    代入a=3,b=2,c=6,
    解得:d=4,
    则d=4cm.
    故答案为:4
    【点睛】
    本题主要考查比例线段的定义.要注意考虑问题要全面.
    13、30°
    【解析】
    试题解析:∵关于x的方程有两个相等的实数根,

    解得:
    ∴锐角α的度数为30°;
    故答案为30°.
    14、a1+1ab+b1=(a+b)1
    【解析】
    试题分析:两个正方形的面积分别为a1,b1,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)1,
    所以a1+1ab+b1=(a+b)1.
    点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.
    15、﹣1
    【解析】
    根据二次项系数非零结合根的判别式△=0,即可得出关于k的一元一次不等式及一元二次方程,解之即可得出k值,将其代入原方程中解之即可得出原方程的解.
    【详解】
    解:∵关于x的一元二次方程kx1+3x-4k+6=0有两个相等的实数根,
    ∴,
    解得:k=,
    ∴原方程为x1+4x+4=0,即(x+1)1=0,
    解得:x=-1.
    故答案为:-1.
    【点睛】
    本题考查根的判别式、一元二次方程的定义以及配方法解一元二次方程,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.
    16、2
    【解析】
    试题分析:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,
    2πr=,解得r=2cm.
    考点:圆锥侧面展开扇形与底面圆之间的关系.
    17、1.
    【解析】
    试题分析:∵△ABC为等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=1°,∵m∥n,∴∠1=1°;故答案为1.
    考点:等腰直角三角形;平行线的性质.
    三、解答题(共7小题,满分69分)
    18、(1) 2x 50-x
    (2)每件商品降价20元,商场日盈利可达2100元.
    【解析】
    (1) 2x 50-x.
    (2)解:由题意,得(30+2x)(50-x)=2 100
    解之得x1=15,x2=20.
    ∵该商场为尽快减少库存,降价越多越吸引顾客.
    ∴x=20.
    答:每件商品降价20元,商场日盈利可达2 100元.
    19、(1),;(1)2.
    【解析】
    试题分析:(1)先求出A、B、C点坐标,用待定系数法求出直线AB和反比例的函数解析式;
    (1)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解.
    试题解析:(1)∵OB=4,OE=1,∴BE=1+4=3.∵CE⊥x轴于点E,tan∠ABO==,∴OA=1,CE=3,∴点A的坐标为(0,1)、点B的坐标为C(4,0)、点C的坐标为(﹣1,3),设直线AB的解析式为,则,解得:,故直线AB的解析式为,设反比例函数的解析式为(),将点C的坐标代入,得3=,∴m=﹣3.∴该反比例函数的解析式为;
    (1)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(3,﹣1),则△BOD的面积=4×1÷1=1,△BOD的面积=4×3÷1=3,故△OCD的面积为1+3=2.
    考点:反比例函数与一次函数的交点问题.
    20、18 60分
    【解析】
    分析:(1)观察图形可知,第4天收到问卷最多,用矩形的高度比=频数之比即可得出结论;
    (2)由于组距相同,各矩形的高度比即为频数的比,可由数据总数=某组的频数÷频率计算;
    (3)根据概率公式计算即可;
    (4)分别计算第4天,第6天的获奖率后比较即可.
    详解:(1)由图可知:第4天收到问卷最多,设份数为x,则:4:6=2:x,解得:x=18;
    (2)2÷[4÷(2+3+4+6+4+1)]=60份;
    (3)抽到第4天回收问卷的概率是;
    (4)第4天收回问卷获奖率,第6天收回问卷获奖率.
    ∵,
    ∴第6天收回问卷获奖率高.
    点睛:本题考查了对频数分布直方图的掌握情况,根据图中信息,求出频率,用来估计概率.用到的知识点为:总体数目=部分数目÷相应频率.部分的具体数目=总体数目×相应频率.概率=所求情况数与总情况数之比.
    21、(1)(2)1(3)①②③
    【解析】
    (1)由抛物线与x轴只有一个交点,可知△=0;
    (2)由抛物线与x轴有两个交点且AB=2,可知A、B坐标,代入解析式,可得k值;
    (3)通过解析式求出对称轴,与y轴交点,并根据系数的关系得出判断.
    【详解】
    (1)∵二次函数y=kx2﹣4kx+3与x轴只有一个公共点,
    ∴关于x的方程kx2﹣4kx+3=0有两个相等的实数根,
    ∴△=(﹣4k)2﹣4×3k=16k2﹣12k=0,
    解得:k1=0,k2=,
    k≠0,
    ∴k=;
    (2)∵AB=2,抛物线对称轴为x=2,
    ∴A、B点坐标为(1,0),(3,0),
    将(1,0)代入解析式,可得k=1,
    (3)①∵当x=0时,y=3,
    ∴二次函数图象与y轴的交点为(0,3),①正确;
    ②∵抛物线的对称轴为x=2,
    ∴抛物线的对称轴不变,②正确;
    ③二次函数y=kx2﹣4kx+3=k(x2﹣4x)+3,将其看成y关于k的一次函数,
    令k的系数为0,即x2﹣4x=0,
    解得:x1=0,x2=4,
    ∴抛物线一定经过两个定点(0,3)和(4,3),③正确.
    综上可知:正确的结论有①②③.
    【点睛】
    本题考查了二次函数的性质,与x、y轴的交点问题,对称轴问题,以及系数与图象的关系问题,是一道很好的综合问题.
    22、(1)见解析;(2)
    【解析】
    分析: (1)首先连接CO,根据CD与⊙O相切于点C,可得:∠OCD=90°;然后根据AB是圆O的直径,可得:∠ACB=90°,据此判断出∠CAD=∠BCD,即可推得△ADC∽△CDB.
    (2)首先设CD为x,则AB=32x,OC=OB=34x,用x表示出OD、BD;然后根据△ADC∽△CDB,可得:ACCB=CDBD,据此求出CB的值是多少,即可求出⊙O半径是多少.
    详解:
    (1)证明:如图,连接CO,

    ∵CD与⊙O相切于点C,
    ∴∠OCD=90°,
    ∵AB是圆O的直径,
    ∴∠ACB=90°,
    ∴∠ACO=∠BCD,
    ∵∠ACO=∠CAD,
    ∴∠CAD=∠BCD,
    在△ADC和△CDB中,
    ∴△ADC∽△CDB.
    (2)解:设CD为x,
    则AB=x,OC=OB=x,
    ∵∠OCD=90°,
    ∴OD===x,
    ∴BD=OD﹣OB=x﹣x=x,
    由(1)知,△ADC∽△CDB,
    ∴=,
    即,
    解得CB=1,
    ∴AB==,
    ∴⊙O半径是.
    点睛: 此题主要考查了切线的性质和应用,以及勾股定理的应用,要熟练掌握.
    23、(1)见解析;(2)
    【解析】
    (1)根据矩形的判定证明即可;
    (2)根据平行四边形的性质和等边三角形的性质解答即可.
    【详解】
    证明:(1)∵BD⊥AB,EF⊥CD,
    ∴∠ABD=90°,∠EFD=90°,
    根据题意,在▱ABCD中,AB∥CD,
    ∴∠BDC=∠ABD=90°,
    ∴BD∥GF,
    ∴四边形BDFG为平行四边形,
    ∵∠BDC=90°,
    ∴四边形BDFG为矩形;
    (2)∵AE平分∠BAD,
    ∴∠BAE=∠DAE,
    ∵AD∥BC,
    ∴∠BEA=∠DAE,
    ∴∠BAE=∠BEA,
    ∴BA=BE,
    ∵在Rt△BCD中,点E为BC边的中点,
    ∴BE=ED=EC,
    ∵在▱ABCD中,AB=CD,
    ∴△ECD为等边三角形,∠C=60°,
    ∴,
    ∴.
    【点睛】
    本题考查了矩形的判定、等边三角形的判定和性质,根据平行四边形的性质和等边三角形的性质解答是解题关键.
    24、(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值为.(3)当a=时,D、O、C、B四点共圆.
    【解析】
    【分析】(1)根据二次函数的图象与x轴相交,则y=0,得出A(a,0),B(3,0),与y轴相交,则x=0,得出D(0,3a).
    (2)根据(1)中A、B、D的坐标,得出抛物线对称轴x=,AO=a,OD=3a,代入求得顶点C(,-),从而得PB=3- =,PC=;再分情况讨论:①当△AOD∽△BPC时,根据相似三角形性质得, 解得:a= 3(舍去);
    ②△AOD∽△CPB,根据相似三角形性质得 ,解得:a1=3(舍),a2=;
    (3)能;连接BD,取BD中点M,根据已知得D、B、O在以BD为直径,M(,a)为圆心的圆上,若点C也在此圆上,则MC=MB,根据两点间的距离公式得一个关于a的方程,解之即可得出答案.
    【详解】(1)∵y=(x-a)(x-3)(0∴A(a,0),B(3,0),
    当x=0时,y=3a,
    ∴D(0,3a);
    (2)∵A(a,0),B(3,0),D(0,3a).∴对称轴x=,AO=a,OD=3a,
    当x= 时,y=- ,
    ∴C(,-),
    ∴PB=3-=,PC=,
    ①当△AOD∽△BPC时,
    ∴,
    即 ,
    解得:a= 3(舍去);
    ②△AOD∽△CPB,
    ∴,
    即 ,
    解得:a1=3(舍),a2= .
    综上所述:a的值为;
    (3)能;连接BD,取BD中点M,
    ∵D、B、O三点共圆,且BD为直径,圆心为M(,a),
    若点C也在此圆上,
    ∴MC=MB,
    ∴ ,
    化简得:a4-14a2+45=0,
    ∴(a2-5)(a2-9)=0,
    ∴a2=5或a2=9,
    ∴a1=,a2=-,a3=3(舍),a4=-3(舍),
    ∵0∴a=,
    ∴当a=时,D、O、C、B四点共圆.
    【点睛】本题考查了二次函数、相似三角形的性质、四点共圆等,综合性较强,有一定的难度,正确进行分析,熟练应用相关知识是解题的关键.
    相关试卷

    22,2024年浙江省杭州市保俶塔申花实验学校中考二模数学卷: 这是一份22,2024年浙江省杭州市保俶塔申花实验学校中考二模数学卷,共4页。

    2024年浙江省杭州市保俶塔实验学校中考数学模拟试卷(4月份)(含答案): 这是一份2024年浙江省杭州市保俶塔实验学校中考数学模拟试卷(4月份)(含答案),共32页。试卷主要包含了的相反数是等内容,欢迎下载使用。

    2023年浙江省杭州市保俶塔申花实验学校中考二模数学模拟试题(原卷版+解析版): 这是一份2023年浙江省杭州市保俶塔申花实验学校中考二模数学模拟试题(原卷版+解析版),文件包含精品解析2023年浙江省杭州市保俶塔申花实验学校中考二模数学模拟试题原卷版docx、精品解析2023年浙江省杭州市保俶塔申花实验学校中考二模数学模拟试题解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map