终身会员
搜索
    上传资料 赚现金

    2021-2022学年湖南省岳阳市君山区重点名校中考数学对点突破模拟试卷含解析

    立即下载
    加入资料篮
    2021-2022学年湖南省岳阳市君山区重点名校中考数学对点突破模拟试卷含解析第1页
    2021-2022学年湖南省岳阳市君山区重点名校中考数学对点突破模拟试卷含解析第2页
    2021-2022学年湖南省岳阳市君山区重点名校中考数学对点突破模拟试卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年湖南省岳阳市君山区重点名校中考数学对点突破模拟试卷含解析

    展开

    这是一份2021-2022学年湖南省岳阳市君山区重点名校中考数学对点突破模拟试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,如图,已知点A等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.二次函数y=﹣(x+2)2﹣1的图象的对称轴是(  )
    A.直线x=1 B.直线x=﹣1 C.直线x=2 D.直线x=﹣2
    2.关于x的不等式组的所有整数解是(  )
    A.0,1 B.﹣1,0,1 C.0,1,2 D.﹣2,0,1,2
    3.如图所示的几何体的俯视图是(    )

    A. B. C. D.
    4.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为( )

    A.30° B.40° C.50° D.60°
    5.如图,直线 AB 与▱ MNPQ 的四边所在直线分别交于 A、B、C、D,则图中的相似三角形有( )

    A.4 对 B.5 对 C.6 对 D.7 对
    6. “嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为
    A. B. C. D.
    7.下列运算正确的是( )
    A.(a2)3=a5 B.(a-b)2=a2-b2 C.3=3 D.=-3
    8.工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为(  )
    A.1.21×103 B.12.1×103 C.1.21×104 D.0.121×105
    9.一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.下列叙述错误的是(  )

    A.AB两地相距1000千米
    B.两车出发后3小时相遇
    C.动车的速度为
    D.普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶千米到达A地
    10.如图,已知点A(1,0),B(0,2),以AB为边在第一象限内作正方形ABCD,直线CD与y轴交于点G,再以DG为边在第一象限内作正方形DEFG,若反比例函数的图像经过点E,则k的值是 ( )

    (A)33 (B)34 (C)35 (D)36
    11.如图,直线AB与直线CD相交于点O,E是∠COB内一点,且OE⊥AB,∠AOC=35°,则∠EOD的度数是( )

    A.155° B.145° C.135° D.125°
    12.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )

    A.2mn B.(m+n)2 C.(m-n)2 D.m2-n2
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加_____m.

    14.如图,路灯距离地面6,身高1.5的小明站在距离灯的底部(点)15的处,则小明的影子的长为________.

    15.在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成一个圆锥,则圆锥的高为______.

    16.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=_____.
    17.将多项式因式分解的结果是 .
    18.若式子有意义,则x的取值范围是   .
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示﹣,设点B所表示的数为m.求m的值;求|m﹣1|+(m+6)0的值.

    20.(6分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).
    根据上述信息,解答下列各题:
    ×
    (1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;
    (2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;
    (3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).
    统计量
    平均数(次)
    中位数(次)
    众数(次)
    方差

    该班级男生





    根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.
    21.(6分)列方程解应用题:某景区一景点要限期完成,甲工程队单独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,则工程期限为多少天?
    22.(8分)如图,AB=AD,AC=AE,BC=DE,点E在BC上.
    求证:△ABC≌△ADE;(2)求证:∠EAC=∠DEB.
    23.(8分)已知:如图,在菱形中,点,,分别为,,的中点,连接,,,.

    求证:;
    当与满足什么关系时,四边形是正方形?请说明理由.
    24.(10分)已知抛物线y=x2﹣(2m+1)x+m2+m,其中m是常数.
    (1)求证:不论m为何值,该抛物线与z轴一定有两个公共点;
    (2)若该抛物线的对称轴为直线x=,请求出该抛物线的顶点坐标.
    25.(10分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.
    (1)求证:PA是⊙O的切线;
    (2)若tan∠BAD=,且OC=4,求BD的长.

    26.(12分)某市飞翔航模小队,计划购进一批无人机.已知3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元.
    (1)求一台A型无人机和一台B型无人机的售价各是多少元?
    (2)该航模小队一次购进两种型号的无人机共50台,并且B型无人机的数量不少于A型无人机的数量的2倍.设购进A型无人机x台,总费用为y元.
    ①求y与x的关系式;
    ②购进A型、B型无人机各多少台,才能使总费用最少?
    27.(12分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制出如下的统计图①和图②,请跟进相关信息,解答下列问题:
    (1)本次抽测的男生人数为   ,图①中m的值为   ;
    (2)求本次抽测的这组数据的平均数、众数和中位数;
    (3)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    根据二次函数顶点式的性质解答即可.
    【详解】
    ∵y=﹣(x+2)2﹣1是顶点式,
    ∴对称轴是:x=-2,
    故选D.
    【点睛】
    本题考查二次函数顶点式y=a(x-h)2+k的性质,对称轴为x=h,顶点坐标为(h,k)熟练掌握顶点式的性质是解题关键.
    2、B
    【解析】
    分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,据此即可得出答案.
    【详解】
    解不等式﹣2x<4,得:x>﹣2,
    解不等式3x﹣5<1,得:x<2,
    则不等式组的解集为﹣2<x<2,
    所以不等式组的整数解为﹣1、0、1,
    故选:B.
    【点睛】
    考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    3、B
    【解析】
    根据俯视图是从上往下看得到的图形解答即可.
    【详解】
    从上往下看得到的图形是:

    故选B.
    【点睛】
    本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线
    4、D
    【解析】
    如图,因为,∠1=30°,∠1+∠3=60°,所以∠3=30°,因为AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故选D.

    5、C
    【解析】
    由题意,AQ∥NP,MN∥BQ,∴△ACM∽△DCN,△CDN∽△BDP,△BPD∽△BQA,△ACM∽△ABQ,△DCN∽△ABQ,△ACM∽△DBP,所以图中共有六对相似三角形.
    故选C.
    6、C
    【解析】
    分析:一个绝对值大于10的数可以表示为的形式,其中为整数.确定的值时,整数位数减去1即可.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.
    详解:1800000这个数用科学记数法可以表示为
    故选C.
    点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.
    7、D
    【解析】
    试题分析:A、原式=a6,错误;B、原式=a2﹣2ab+b2,错误;C、原式不能合并,错误;
    D、原式=﹣3,正确,故选D
    考点:完全平方公式;合并同类项;同底数幂的乘法;平方差公式.
    8、C
    【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    详解:1.21万=1.21×104,
    故选:C.
    点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    9、C
    【解析】
    可以用物理的思维来解决这道题.
    【详解】
    未出发时,x=0,y=1000,所以两地相距1000千米,所以A选项正确;y=0时两车相遇,x=3,所以B选项正确;设动车速度为V1,普车速度为V2,则3(V1+ V2)=1000,所以C选项错误;D选项正确.
    【点睛】
    理解转折点的含义是解决这一类题的关键.
    10、D
    【解析】
    试题分析:过点E作EM⊥OA,垂足为M,∵A(1,0),B(0,2),∴OA-1,OB=2,又∵∠AOB=90°,∴AB==,∵AB//CD,∴∠ABO=∠CBG,∵∠BCG=90°,∴△BCG∽△AOB,∴,∵BC=AB=,∴CG=2,∵CD=AD=AB=,∴DG=3,∴DE=DG=3,∴AE=4,∵∠BAD=90°,∴∠EAM+∠BAO=90°,∵∠BAO+∠ABO=90°,∴∠EAM=∠ABO,又∵∠EMA=90°,∴△EAM∽△ABO,∴,即,∴AM=8,EM=4,∴AM=9,∴E(9,4),∴k=4×9=36;
    故选D.

    考点:反比例函数综合题.
    11、D
    【解析】
    解:∵

    ∵EO⊥AB,


    故选D.
    12、C
    【解析】
    解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1.
    又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)1-4mn=(m-n)1.
    故选C.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1.
    【解析】
    根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=-1.5代入抛物线解析式得出水面宽度,即可得出答案
    【详解】
    解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,

    抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半1米,抛物线顶点C坐标为(0,1),
    设顶点式y=ax1+1,把A点坐标(-1,0)代入得a=-0.5,
    ∴抛物线解析式为y=-0.5x1+1,
    当水面下降1.5米,通过抛物线在图上的观察可转化为:
    当y=-1.5时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,
    可以通过把y=-1.5代入抛物线解析式得出:
    -1.5=-0.5x1+1,
    解得:x=±3,
    1×3-4=1,
    所以水面下降1.5m,水面宽度增加1米.
    故答案为1.
    【点睛】
    本题考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,学会把实际问题转化为二次函数,利用二次函数的性质解决问题,属于中考常考题型.
    14、1.
    【解析】
    易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.
    【详解】

    解:根据题意,易得△MBA∽△MCO,
    根据相似三角形的性质可知

    即,
    解得AM=1m.则小明的影长为1米.
    故答案是:1.
    【点睛】
    本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长.
    15、 cm
    【解析】
    利用已知得出底面圆的半径为:1cm,周长为2πcm,进而得出母线长,即可得出答案.
    【详解】
    ∵半径为1cm的圆形,
    ∴底面圆的半径为:1cm,周长为2πcm,
    扇形弧长为:2π=,
    ∴R=4,即母线为4cm,
    ∴圆锥的高为:(cm).
    故答案为cm.
    【点睛】
    此题主要考查了圆锥展开图与原图对应情况,以及勾股定理等知识,根据已知得出母线长是解决问题的关键.
    16、(y﹣1)1(x﹣1)1.
    【解析】
    解:令x+y=a,xy=b,
    则(xy﹣1)1﹣(x+y﹣1xy)(1﹣x﹣y)
    =(b﹣1)1﹣(a﹣1b)(1﹣a)
    =b1﹣1b+1+a1﹣1a﹣1ab+4b
    =(a1﹣1ab+b1)+1b﹣1a+1
    =(b﹣a)1+1(b﹣a)+1
    =(b﹣a+1)1;
    即原式=(xy﹣x﹣y+1)1=[x(y﹣1)﹣(y﹣1)]1=[(y﹣1)(x﹣1)]1=(y﹣1)1(x﹣1)1.
    故答案为(y﹣1)1(x﹣1)1.
    点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).
    (1)公式法:完全平方公式,平方差公式.
    (3)十字相乘法.
    因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.
    17、m(m+n)(m﹣n).
    【解析】
    试题分析:原式==m(m+n)(m﹣n).故答案为:m(m+n)(m﹣n).
    考点:提公因式法与公式法的综合运用.
    18、且
    【解析】
    ∵式子在实数范围内有意义,
    ∴x+1≥0,且x≠0,
    解得:x≥-1且x≠0.
    故答案为x≥-1且x≠0.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)2- ;(2)
    【解析】
    试题分析: 点表示 向右直爬2个单位到达点,点表示的数为
    把的值代入,对式子进行化简即可.
    试题解析: 由题意点和点的距离为,其点的坐标为 因此点坐标
    把的值代入得:



    20、(1)20,1;(2)2人;(1)男生比女生的波动幅度大.
    【解析】
    (1)将柱状图中的女生人数相加即可求得总人数,中位数为第10与11名同学的次数的平均数.
    (2)先求出该班女生对“两会”新闻的“关注指数”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可.
    (1)比较该班级男、女生收看“两会”新闻次数的波动大小,需要求出女生的方差.
    【详解】
    (1)该班级女生人数是2+5+6+5+2=20,女生收看“两会”新闻次数的中位数是1.
    故答案为20,1.
    (2)由题意:该班女生对“两会”新闻的“关注指数”为=65%,所以,男生对“两会”新闻的“关注指数”为60%.设该班的男生有x人,则=60%,解得:x=2.
    答:该班级男生有2人.
    (1)该班级女生收看“两会”新闻次数的平均数为=1,女生收看“两会”新闻次数的方差为:=.
    ∵2>,∴男生比女生的波动幅度大.
    【点睛】
    本题考查了平均数,中位数,方差的意义.解题的关键是明确平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
    21、15天
    【解析】
    试题分析:首先设规定的工期是x天,则甲工程队单独做需(x-1)天,乙工程队单独做需(x+6)天,根据题意可得等量关系:乙工程队干x天的工作量+甲工程队干4天的工作量=1,根据等量关系列出方程,解方程即可.
    试题解析:设工程期限为x天.
    根据题意得,
    解得:x=15.
    经检验x=15是原分式方程的解.
    答:工程期限为15天.
    22、(1)详见解析;(2)详见解析.
    【解析】
    (1)用“SSS”证明即可;
    (2)借助全等三角形的性质及角的和差求出∠DAB=∠EAC,再利用三角形内角和定理求出∠DEB=∠DAB,即可说明∠EAC=∠DEB.
    【详解】
    解:(1)在△ABC和△ADE中

    ∴△ABC≌△ADE(SSS);
    (2)由△ABC≌△ADE,
    则∠D=∠B,∠DAE=∠BAC.
    ∴∠DAE﹣∠ABE=∠BAC﹣∠BAE,即∠DAB=∠EAC.
    设AB和DE交于点O,
    ∵∠DOA=BOE,∠D=∠B,
    ∴∠DEB=∠DAB.
    ∴∠EAC=∠DEB.
    【点睛】
    本题主要考查了全等三角形的判定和性质,解题的关键是利用全等三角形的性质求出相等的角,体现了转化思想的运用.
    23、见解析
    【解析】
    (1)由菱形的性质得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位线定理证出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由(SAS)证明△BCE≌△DCF即可;
    (2)由(1)得:AE=OE=OF=AF,证出四边形AEOF是菱形,再证出∠AEO=90°,四边形AEOF是正方形.
    【详解】
    (1)证明:∵四边形ABCD是菱形,
    ∴∠B=∠D,AB=BC=DC=AD,
    ∵点E,O,F分别为AB,AC,AD的中点,
    ∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,
    在△BCE和△DCF中,,
    ∴△BCE≌△DCF(SAS);
    (2)当AB⊥BC时,四边形AEOF是正方形,理由如下:
    由(1)得:AE=OE=OF=AF,
    ∴四边形AEOF是菱形,
    ∵AB⊥BC,OE∥BC,
    ∴OE⊥AB,
    ∴∠AEO=90°,
    ∴四边形AEOF是正方形.
    【点睛】
    本题考查了全等三角形、菱形、正方形的性质,解题的关键是熟练的掌握菱形、正方形、全等三角形的性质.
    24、 (1)见解析;(2)顶点为(,﹣)
    【解析】
    (1)根据题意,由根的判别式△=b2﹣4ac>0得到答案;
    (2)结合题意,根据对称轴x=﹣得到m=2,即可得到抛物线解析式为y=x2﹣5x+6,再将抛物线解析式为y=x2﹣5x+6变形为y=x2﹣5x+6=(x﹣)2﹣,即可得到答案.
    【详解】
    (1)证明:a=1,b=﹣(2m+1),c=m2+m,
    ∴△=b2﹣4ac=[﹣(2m+1)]2﹣4×1×(m2+m)=1>0,
    ∴抛物线与x轴有两个不相同的交点.
    (2)解:∵y=x2﹣(2m+1)x+m2+m,
    ∴对称轴x=﹣==,
    ∵对称轴为直线x=,
    ∴=,
    解得m=2,
    ∴抛物线解析式为y=x2﹣5x+6,
    ∵y=x2﹣5x+6=(x﹣)2﹣,
    ∴顶点为(,﹣ ).
    【点睛】
    本题考查根的判别式、对称轴和顶点,解题的关键是掌握根的判别式、对称轴和顶点的计算和使用.
    25、(1)证明见解析;(2)
    【解析】
    试题分析:(1)连接OB,由SSS证明△PAO≌△PBO,得出∠PAO=∠PBO=90°即可;
    (2)连接BE,证明△PAC∽△AOC,证出OC是△ABE的中位线,由三角形中位线定理得出BE=2OC,由△DBE∽△DPO可求出.
    试题解析:(1)连结OB,则OA=OB.如图1,

    ∵OP⊥AB,
    ∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB.
    在△PAO和△PBO中,
    ∵,
    ∴△PAO≌△PBO(SSS),
    ∴∠PBO=∠PAO.∵PB为⊙O的切线,B为切点,∴∠PBO=90°,
    ∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;
    (2)连结BE.如图2,

    ∵在Rt△AOC中,tan∠BAD=tan∠CAO=,且OC=4,
    ∴AC=1,则BC=1.在Rt△APO中,∵AC⊥OP,
    ∴△PAC∽△AOC,∴AC2=OC•PC,解得PC=9,
    ∴OP=PC+OC=2.在Rt△PBC中,由勾股定理,得PB=,
    ∵AC=BC,OA=OE,即OC为△ABE的中位线.
    ∴OC=BE,OC∥BE,∴BE=2OC=3.
    ∵BE∥OP,∴△DBE∽△DPO,
    ∴,即,解得BD=.
    26、(1)一台A型无人机售价800元,一台B型无人机的售价1000元;
    (2)①y=﹣200x+50000;②购进A型、B型无人机各16台、34台时,才能使总费用最少.
    【解析】
    (1)根据3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元,可以列出相应的方程组,从而可以解答本题;
    (2)①根据题意可以得到y与x的函数关系式;
    ②根据①中的函数关系式和B型无人机的数量不少于A型无人机的数量的2倍,可以求得购进A型、B型无人机各多少台,才能使总费用最少.
    【详解】
    解:(1)设一台型无人机售价元,一台型无人机的售价元,

    解得,,
    答:一台型无人机售价元,一台型无人机的售价元;
    (2)①由题意可得,

    即y与x的函数关系式为;
    ②∵B型无人机的数量不少于A型无人机的数量的2倍,

    解得,,

    ∴当时,y取得最小值,此时,
    答:购进型、型无人机各台、台时,才能使总费用最少.
    【点睛】
    本题考查二元一次方程组的应用、一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和方程的知识解答.
    27、(1)50、1;(2)平均数为5.16次,众数为5次,中位数为5次;(3)估计该校350名九年级男生中有2人体能达标.
    【解析】
    分析:(Ⅰ)根据4次的人数及其百分比可得总人数,用6次的人数除以总人数求得m即可;
    (Ⅱ)根据平均数、众数、中位数的定义求解可得;
    (Ⅲ)总人数乘以样本中5、6、7次人数之和占被调查人数的比例可得.
    详解:(Ⅰ)本次抽测的男生人数为10÷20%=50,m%=×100%=1%,所以m=1.
    故答案为50、1;
    (Ⅱ)平均数为=5.16次,众数为5次,中位数为=5次;
    (Ⅲ)×350=2.
    答:估计该校350名九年级男生中有2人体能达标.
    点睛:本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.

    相关试卷

    北京海淀区重点名校2021-2022学年中考数学对点突破模拟试卷含解析:

    这是一份北京海淀区重点名校2021-2022学年中考数学对点突破模拟试卷含解析,共19页。

    2022届湖南省岳阳市城区中考数学对点突破模拟试卷含解析:

    这是一份2022届湖南省岳阳市城区中考数学对点突破模拟试卷含解析,共18页。试卷主要包含了二元一次方程组的解为,下列各式计算正确的是,计算--|-3|的结果是等内容,欢迎下载使用。

    2021-2022学年宁夏省石嘴山市重点名校中考数学对点突破模拟试卷含解析:

    这是一份2021-2022学年宁夏省石嘴山市重点名校中考数学对点突破模拟试卷含解析,共23页。试卷主要包含了下列计算正确的是,下列几何体是棱锥的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map